Contents

Azure API for FHIR
Overview
About Azure API for FHIR
About Azure loT Connector for FHIR (preview)
Quickstarts
Deploy Azure API for FHIR
Using Portal
Using PowerShell
Using CLI
Using ARM template
Deploy Azure loT Connector for FHIR (preview)
Using Portal
Using ARM template
Tutorials
Deploy JavaScript application
1. Initial setup and FHIR deployment
2. Register public client application
3. Test setup with Postman
4. Write web application
Access FHIR APl with Postman
Use SMART on FHIR proxy
Ingest data from IoT devices
Receive device data through Azure loT Hub
Interoperability and Patient Access
CMS Interoperability and Patient Access rule introduction
CARIN Implementation Guide for Blue Button
Da Vinci Drug Formulary
Da Vinci PDex

How-to guides

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/index.html#body

Registering applications
Register applications for Azure API for FHIR overview
Resource application
Confidential client application
Public client application
Service client application
Configure settings
Configure another Azure API for FHIR settings
Configure Azure RBAC
Configure Local RBAC
Configure database settings
Configure customer-managed keys
Configure CORS
Configure Export
Configure Private Link
Search
Overview of FHIR search
Defining custom search parameters
How to run a reindex job
Search examples for Azure API for FHIR
Operations
Profile validation
Export data
Export data
De-identified export
Move data to Synapse
Convert data
$convert-data and FHIR Converter Extension Templates
Patient-everything in FHIR
$member-match operation
Find identity object IDs

Diagnostic logging and metrics

Enable Diagnostics Logging in Azure API for FHIR
Display and configure Azure loT Connector for FHIR (preview) metrics
Get a token for Azure API for FHIR - CLI
Troubleshoot failures in Azure 10T Connector for FHIR (preview)
Concepts
Azure AD and Azure API for FHIR Overview
Access token validation
Use Custom HTTP headers to add data to Audit Logs
Azure loT Connector for FHIR (preview) workings
Azure loT Connector for FHIR (preview) data flow
Azure loT Connector for FHIR (preview) mapping templates
Security
Security controls by Azure Policy
Resources
FAQ
Supported features
GitHub Projects
Partner ecosystem
Reference
Azure CLI

Azure Policy built-ins

https://docs.microsoft.com/cli/azure/healthcareapis

What is Azure API for FHIR®?

3/11/2021 « 8 minutes to read « Edit Online

Azure API for FHIR enables rapid exchange of data through Fast Healthcare Interoperability Resources (FHIRQ®))
APIs, backed by a managed Platform-as-a Service (PaaS) offering in the cloud. It makes it easier for anyone
working with health data to ingest, manage, and persist Protected Health Information PHI in the cloud:

e Managed FHIR service, provisioned in the cloud in minutes

e Enterprise-grade, FHIR®) -based endpoint in Azure for data access, and storage in FHIR®) format
e High performance, low latency

e Secure management of Protected Health Information (PHI) in a compliant cloud environment

e SMART on FHIR for mobile and web implementations

e Control your own data at scale with role-based access control (RBAC)

e Audit log tracking for access, creation, modification, and reads within each data store

Azure API for FHIR allows you to create and deploy a FHIR service in just minutes to leverage the elastic scale of
the cloud. You pay only for the throughput and storage you need. The Azure services that power Azure API for
FHIR are designed for rapid performance no matter what size datasets you're managing.

The FHIR APl and compliant data store enable you to securely connect and interact with any system that utilizes
FHIR APIs. Microsoft takes on the operations, maintenance, updates, and compliance requirements in the PaaS
offering, so you can free up your own operational and development resources.

The following video presents an overview of Azure API for FHIR:

Leveraging the power of your data with FHIR

The healthcare industry is rapidly transforming health data to the emerging standard of FHIR®) (Fast
Healthcare Interoperability Resources). FHIR enables a robust, extensible data model with standardized
semantics and data exchange that enables all systems using FHIR to work together. Transforming your data to
FHIR allows you to quickly connect existing data sources such as the electronic health record systems or
research databases. FHIR also enables the rapid exchange of data in modern implementations of mobile and
web development. Most importantly, FHIR can simplify data ingestion and accelerate development with
analytics and machine learning tools.

Securely manage health data in the cloud

The Azure API for FHIR allows for the exchange of data via consistent, RESTful, FHIR APIs based on the HL7 FHIR
specification. Backed by a managed PaaS offering in Azure, it also provides a scalable and secure environment
for the management and storage of Protected Health Information (PHI) data in the native FHIR format.

Free up your resources to innovate

You could invest resources building and running your own FHIR service, but with the Azure API for FHIR,
Microsoft takes on the workload of operations, maintenance, updates and compliance requirements, allowing
you to free up your own operational and development resources.

Enable interoperability with FHIR

Using the Azure API for FHIR enables to you connect with any system that leverages FHIR APIs for read, write,
search, and other functions. It can be used as a powerful tool to consolidate, normalize, and apply machine
learning with clinical data from electronic health records, clinician and patient dashboards, remote monitoring

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/overview.md
https://www.hhs.gov/answers/hipaa/what-is-phi/index.html
https://www.youtube-nocookie.com/embed/5vS7Iq9vpXE
https://hl7.org/fhir

programs, or with databases outside of your system that have FHIR APIs.

Control Data Access at Scale

You control your data. Role-based access control (RBAC) enables you to manage how your data is stored and
accessed. Providing increased security and reducing administrative workload, you determine who has access to
the datasets you create, based on role definitions you create for your environment.

Audit logs and tracking

Quickly track where your data is going with built-in audit logs. Track access, creation, modification, and reads
within each data store.

Secure your data

Protect your PHI with unparalleled security intelligence. Your data is isolated to a unique database per API
instance and protected with multi-region failover. The Azure API for FHIR implements a layered, in-depth
defense and advanced threat protection for your data.

Applications for a FHIR Service

FHIR servers are key tools for interoperability of health data. The Azure API for FHIR is designed as an APl and
service that you can create, deploy, and begin using quickly. As the FHIR standard expands in healthcare, use
cases will continue to grow, but some initial customer applications where Azure API for FHIR is useful are below:

e Startup/loT and App Development: Customers developing a patient or provider centric app (mobile
or web) can leverage Azure API for FHIR as a fully managed backend service. The Azure API for FHIR
provides a valuable resource in that customers can managing data and exchanging data in a secure cloud
environment designed for health data, leverage SMART on FHIR implementation guidelines, and enable
their technology to be utilized by all provider systems (for example, most EHRs have enabled FHIR read
APIs).

e Healthcare Ecosystems: While EHRs exist as the primary ‘source of truth’ in many clinical settings, it is
not uncommon for providers to have multiple databases that aren’t connected to one another or store
data in different formats. Utilizing the Azure API for FHIR as a service that sits on top of those systems
allows you to standardize data in the FHIR format. This helps to enable data exchange across multiple
systems with a consistent data format.

e Research: Healthcare researchers will find the FHIR standard in general and the Azure API for FHIR
useful as it normalizes data around a common FHIR data model and reduces the workload for machine
learning and data sharing. Exchange of data via the Azure API for FHIR provides audit logs and access
controls that help control the flow of data and who has access to what data types.

FHIR from Microsoft

FHIR capabilities from Microsoft are available in two configurations:

e Azure API for FHIR — A PaaS offering in Azure, easily provisioned in the Azure portal and managed by
Microsoft.

e FHIR Server for Azure — an open-source project that can be deployed into your Azure subscription, available
on GitHub at https://github.com/Microsoft/fhir-server.

For use cases that requires extending or customizing the FHIR server or require access the underlying services
—such as the database—without going through the FHIR APIs, developers should choose the open-source FHIR
Server for Azure. For implementation of a turn-key, production-ready FHIR APl and backend service where
persisted data should only be accessed through the FHIR API, developers should choose the Azure API for FHIR

Azure loT Connector for FHIR (preview)

https://github.com/Microsoft/fhir-server

Azure loT Connector for Fast Healthcare Interoperability Resources (FHIR®))* is an optional feature of Azure API
for FHIR that provides the capability to ingest data from Internet of Medical Things (IoMT) devices. Internet of
Medical Things is a category of loT devices that capture and exchange health & wellness data with other
healthcare IT systems over network. Some examples of loMT devices include fitness and clinical wearables,
monitoring sensors, activity trackers, point of care kiosks, or even a smart pill. The Azure loT Connector for FHIR
feature enables you to quickly set up a service to ingest IoMT data into Azure API for FHIR in a scalable, secure,
and compliant manner.

Azure loT Connector for FHIR can accept any JSON-based messages sent out by an [oMT device. This data is first
transformed into appropriate FHIR-based Observation resources and then persisted into Azure API for FHIR. The
data transformation logic is defined through a pair of mapping templates that you configure based on your
message schema and FHIR requirements. Device data can be pushed directly to Azure loT Connector for FHIR or
seamlessly used in concert with other Azure l1oT solutions (Azure loT Hub and Azure loT Central). Azure loT
Connector for FHIR provides a secure data pipeline while allowing the Azure IoT solutions manage provisioning
and maintenance of the physical devices.

Applications of Azure l1oT Connector for FHIR (preview)

Use of loMT devices is rapidly expanding in healthcare and Azure loT Connector for FHIR is designed to bridge
the gap of bringing multiple devices data with security and compliance into Azure API for FHIR. Bringing loMT
data into a FHIR server enables holistic data insights and innovative clinical workflows. Some common scenarios
for Azure loT Connector for FHIR are:

e Remote Patient Monitoring/Telehealth: Remote patient monitoring provides the ability to gather patient
health data outside of traditional healthcare settings. Healthcare institutions can use Azure loT Connector for
FHIR to bring health data generated by remote devices into Azure API for FHIR. This data could be used to
closely track patients health status, monitor patients adherence to the treatment plan and provide
personalized care.

e Research and Life Sciences: Clinical trials are rapidly adopting loMT devices like bio sensors, wearables,
mobile apps to capture trial data. These trials can harness Azure loT Connector for FHIR to transmit device
data to Azure API for FHIR in a secure, efficient, and effective manner. Once in Azure API for FHIR, trial data
could be used to run real-time analysis of trial data.

e Advanced Analytics: loMT devices can provide large volume and variety of data at a high velocity, which
makes them a great fit for serving training and testing data for your machine learning models. Azure loT
Connector for FHIR is inherently built to work with wide range of data frequency, flexible data schema, and
cloud scaling with low latency. These attributes make Azure loT Connector for FHIR an excellent choice for
capturing device data for your advanced analytics needs.

e Smart Hospitals/Clinics: Today smart hospitals and clinics are setting up an infrastructure of
interconnected digital assets. Azure loT Connector for FHIR can be used to capture and integrate data from
these connected components. Actionable insights from such data set enable better patient care and

operational efficiency.

Next Steps

To start working with the Azure API for FHIR, follow the 5-minute quickstart to deploy the Azure API for FHIR.
Deploy Azure API for FHIR

To try out the Azure loT Connector for FHIR feature, check out the quickstart to deploy Azure loT Connector for
FHIR using Azure portal.

Deploy Azure loT Connector for FHIR

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered
trademark of HL7 and is used with the permission of HL7.

https://www.hl7.org/fhir/observation.html
https://docs.microsoft.com/en-us/azure/iot-hub/index
https://docs.microsoft.com/en-us/azure/iot-central/index

What is Azure API for FHIR®?

3/11/2021 « 8 minutes to read « Edit Online

Azure API for FHIR enables rapid exchange of data through Fast Healthcare Interoperability Resources (FHIRQ®))
APIs, backed by a managed Platform-as-a Service (PaaS) offering in the cloud. It makes it easier for anyone
working with health data to ingest, manage, and persist Protected Health Information PHI in the cloud:

e Managed FHIR service, provisioned in the cloud in minutes

e Enterprise-grade, FHIR®) -based endpoint in Azure for data access, and storage in FHIR®) format
e High performance, low latency

e Secure management of Protected Health Information (PHI) in a compliant cloud environment

e SMART on FHIR for mobile and web implementations

e Control your own data at scale with role-based access control (RBAC)

e Audit log tracking for access, creation, modification, and reads within each data store

Azure API for FHIR allows you to create and deploy a FHIR service in just minutes to leverage the elastic scale of
the cloud. You pay only for the throughput and storage you need. The Azure services that power Azure API for
FHIR are designed for rapid performance no matter what size datasets you're managing.

The FHIR APl and compliant data store enable you to securely connect and interact with any system that utilizes
FHIR APIs. Microsoft takes on the operations, maintenance, updates, and compliance requirements in the PaaS
offering, so you can free up your own operational and development resources.

The following video presents an overview of Azure API for FHIR:

Leveraging the power of your data with FHIR

The healthcare industry is rapidly transforming health data to the emerging standard of FHIR®) (Fast
Healthcare Interoperability Resources). FHIR enables a robust, extensible data model with standardized
semantics and data exchange that enables all systems using FHIR to work together. Transforming your data to
FHIR allows you to quickly connect existing data sources such as the electronic health record systems or
research databases. FHIR also enables the rapid exchange of data in modern implementations of mobile and
web development. Most importantly, FHIR can simplify data ingestion and accelerate development with
analytics and machine learning tools.

Securely manage health data in the cloud

The Azure API for FHIR allows for the exchange of data via consistent, RESTful, FHIR APIs based on the HL7 FHIR
specification. Backed by a managed PaaS offering in Azure, it also provides a scalable and secure environment
for the management and storage of Protected Health Information (PHI) data in the native FHIR format.

Free up your resources to innovate

You could invest resources building and running your own FHIR service, but with the Azure API for FHIR,
Microsoft takes on the workload of operations, maintenance, updates and compliance requirements, allowing
you to free up your own operational and development resources.

Enable interoperability with FHIR

Using the Azure API for FHIR enables to you connect with any system that leverages FHIR APIs for read, write,
search, and other functions. It can be used as a powerful tool to consolidate, normalize, and apply machine
learning with clinical data from electronic health records, clinician and patient dashboards, remote monitoring

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/overview.md
https://www.hhs.gov/answers/hipaa/what-is-phi/index.html
https://www.youtube-nocookie.com/embed/5vS7Iq9vpXE
https://hl7.org/fhir

programs, or with databases outside of your system that have FHIR APIs.

Control Data Access at Scale

You control your data. Role-based access control (RBAC) enables you to manage how your data is stored and
accessed. Providing increased security and reducing administrative workload, you determine who has access to
the datasets you create, based on role definitions you create for your environment.

Audit logs and tracking

Quickly track where your data is going with built-in audit logs. Track access, creation, modification, and reads
within each data store.

Secure your data

Protect your PHI with unparalleled security intelligence. Your data is isolated to a unique database per API
instance and protected with multi-region failover. The Azure API for FHIR implements a layered, in-depth
defense and advanced threat protection for your data.

Applications for a FHIR Service

FHIR servers are key tools for interoperability of health data. The Azure API for FHIR is designed as an APl and
service that you can create, deploy, and begin using quickly. As the FHIR standard expands in healthcare, use
cases will continue to grow, but some initial customer applications where Azure API for FHIR is useful are below:

e Startup/loT and App Development: Customers developing a patient or provider centric app (mobile
or web) can leverage Azure API for FHIR as a fully managed backend service. The Azure API for FHIR
provides a valuable resource in that customers can managing data and exchanging data in a secure cloud
environment designed for health data, leverage SMART on FHIR implementation guidelines, and enable
their technology to be utilized by all provider systems (for example, most EHRs have enabled FHIR read
APIs).

e Healthcare Ecosystems: While EHRs exist as the primary ‘source of truth’ in many clinical settings, it is
not uncommon for providers to have multiple databases that aren’t connected to one another or store
data in different formats. Utilizing the Azure API for FHIR as a service that sits on top of those systems
allows you to standardize data in the FHIR format. This helps to enable data exchange across multiple
systems with a consistent data format.

e Research: Healthcare researchers will find the FHIR standard in general and the Azure API for FHIR
useful as it normalizes data around a common FHIR data model and reduces the workload for machine
learning and data sharing. Exchange of data via the Azure API for FHIR provides audit logs and access
controls that help control the flow of data and who has access to what data types.

FHIR from Microsoft

FHIR capabilities from Microsoft are available in two configurations:

e Azure API for FHIR — A PaaS offering in Azure, easily provisioned in the Azure portal and managed by
Microsoft.

e FHIR Server for Azure — an open-source project that can be deployed into your Azure subscription, available
on GitHub at https://github.com/Microsoft/fhir-server.

For use cases that requires extending or customizing the FHIR server or require access the underlying services
—such as the database—without going through the FHIR APIs, developers should choose the open-source FHIR
Server for Azure. For implementation of a turn-key, production-ready FHIR APl and backend service where
persisted data should only be accessed through the FHIR API, developers should choose the Azure API for FHIR

Azure loT Connector for FHIR (preview)

https://github.com/Microsoft/fhir-server

Azure loT Connector for Fast Healthcare Interoperability Resources (FHIR®))* is an optional feature of Azure API
for FHIR that provides the capability to ingest data from Internet of Medical Things (IoMT) devices. Internet of
Medical Things is a category of loT devices that capture and exchange health & wellness data with other
healthcare IT systems over network. Some examples of loMT devices include fitness and clinical wearables,
monitoring sensors, activity trackers, point of care kiosks, or even a smart pill. The Azure loT Connector for FHIR
feature enables you to quickly set up a service to ingest IoMT data into Azure API for FHIR in a scalable, secure,
and compliant manner.

Azure loT Connector for FHIR can accept any JSON-based messages sent out by an [oMT device. This data is first
transformed into appropriate FHIR-based Observation resources and then persisted into Azure API for FHIR. The
data transformation logic is defined through a pair of mapping templates that you configure based on your
message schema and FHIR requirements. Device data can be pushed directly to Azure loT Connector for FHIR or
seamlessly used in concert with other Azure l1oT solutions (Azure loT Hub and Azure loT Central). Azure loT
Connector for FHIR provides a secure data pipeline while allowing the Azure IoT solutions manage provisioning
and maintenance of the physical devices.

Applications of Azure l1oT Connector for FHIR (preview)

Use of loMT devices is rapidly expanding in healthcare and Azure loT Connector for FHIR is designed to bridge
the gap of bringing multiple devices data with security and compliance into Azure API for FHIR. Bringing loMT
data into a FHIR server enables holistic data insights and innovative clinical workflows. Some common scenarios
for Azure loT Connector for FHIR are:

e Remote Patient Monitoring/Telehealth: Remote patient monitoring provides the ability to gather patient
health data outside of traditional healthcare settings. Healthcare institutions can use Azure loT Connector for
FHIR to bring health data generated by remote devices into Azure API for FHIR. This data could be used to
closely track patients health status, monitor patients adherence to the treatment plan and provide
personalized care.

e Research and Life Sciences: Clinical trials are rapidly adopting loMT devices like bio sensors, wearables,
mobile apps to capture trial data. These trials can harness Azure loT Connector for FHIR to transmit device
data to Azure API for FHIR in a secure, efficient, and effective manner. Once in Azure API for FHIR, trial data
could be used to run real-time analysis of trial data.

e Advanced Analytics: loMT devices can provide large volume and variety of data at a high velocity, which
makes them a great fit for serving training and testing data for your machine learning models. Azure loT
Connector for FHIR is inherently built to work with wide range of data frequency, flexible data schema, and
cloud scaling with low latency. These attributes make Azure loT Connector for FHIR an excellent choice for
capturing device data for your advanced analytics needs.

e Smart Hospitals/Clinics: Today smart hospitals and clinics are setting up an infrastructure of
interconnected digital assets. Azure loT Connector for FHIR can be used to capture and integrate data from
these connected components. Actionable insights from such data set enable better patient care and

operational efficiency.

Next Steps

To start working with the Azure API for FHIR, follow the 5-minute quickstart to deploy the Azure API for FHIR.
Deploy Azure API for FHIR

To try out the Azure loT Connector for FHIR feature, check out the quickstart to deploy Azure loT Connector for
FHIR using Azure portal.

Deploy Azure loT Connector for FHIR

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered
trademark of HL7 and is used with the permission of HL7.

https://www.hl7.org/fhir/observation.html
https://docs.microsoft.com/en-us/azure/iot-hub/index
https://docs.microsoft.com/en-us/azure/iot-central/index

Quickstart: Deploy Azure API for FHIR using Azure

portal

3/11/2021 « 2 minutes to read = Edit Online

In this quickstart, you'll learn how to deploy Azure API for FHIR using the Azure portal.

If you don't have an Azure subscription, create a free account before you begin.

Create new resource
Open the Azure portal and click Create a resource

A Home - Microsoft Azure ® 4

& < @ https//portal.szure.com/hame

Microsoft Azure A Search resources, services, and does

Azure services Sesall (1109)

"y — .
8 = ® D & 235 & > @
Wirtual Storage App Services SOLdatabases Azure Database Azure Cosmes Kubernetes Function Apps Azure Cognitive

machines aceounts for PoatgraSOL s] senices Databicks Servicas

Make the most out of Azure

8 3 o % ”

Connect to Azure via an

\pp

¥ Function Apps lore A dith Manitar | 5 R " fimize perlor
Explore Azure with free criine oniter your apps and ecure your apsps an Optimize pe-formance. et atet bromeer tased
courses by Micrasoft infrastructure infrastructure reliability, security, and costs shel
Microsoft Learn B Azure Manitor Sacurity Center > Aaure Advisor Cloud Shell >
Recent resources See all your recent resources See all your resources Useful links

amples, and
tecture guides for

at help turn ideas inta solutions, and get infa
&N SUPROIL, B and pricing.

- vesources o display Kaep current with Azure updates [2

nd what's on

nap and subscribe to

used rescurces for Azure Source wiaps up all the news

As you visit resources, they'll b
t + Billing quick

ws from the Azure b L}
Hear right from the developing features that help you solve
problams in the Azure biog.

Azure maobile app
Gat anytima, anywhere access to your Azure resources.

Search for Azure API for FHIR

You can find Azure API for FHIR by typing "FHIR" into the search box:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-portal-quickstart.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com

Home > New

New

| O Azure API for FHIR] X

Azure API for FHIR

e T e e = ——

Windows Server 2016 Datacenter
Quickstart tutorial

Get started

Recently created

Recently created Ubuntu Server 18.04 LTS
. . @ Learn more

Al + Machine Learning

Analytics Web App

Blockchain @ Quickstart tutorial

Create Azure API for FHIR account

Select Create to create a new Azure API for FHIR account:

Home > New > Azure API for FHIR
Azure API for FHIR

Microsoft

Microsoft

The Azure API for FHIR® is a managed, standards-based, and healthcare data platform. It enables organizations to bring their clinical health data into the cloud based on the
interoperable data standard FHIR®.

FHIR helps unlock the value of data and respond to changing business dynamics more easily.

Organizations are able to bring together clinical data from multiple systems of records, normalize the data using common models and specifications, and use that data in Al
workloads to derive insight and power new systems of engagement, including clinician and patient dashboards, diagnostic assistants, population health insights, and
connected healthcare scenarios, such as Remote Patient Monitoring.

The Azure API for FHIR is capable of powering Internet of Medical Things (IoMT) scenarios, population health research projects, Al-powered diagnostic solutions and much
more.

Security and privacy features are embedded into the service. Customers own and control patient data, knowing how it is stored and accessed.

Useful Links

HL7 FHIR Specification
FHIR Server for Azure
Documentation

Enter account details

Select an existing resource group or create a new one, choose a name for the account, and finally click Review
+ create:

Home > New > Azure APl for FHIR > Create Azure API for FHIR
Create Azure API for FHIR

Basics* Additional settings* Tags Review + create

The Azure API for FHIR® is a managed, standards-based, and compliant healthcare data platform. It enables organizations
to bring their clinical health data into the cloud based on the interoperable data standard FHIR®.

Project details

Subscription * | Health Demo v |
Resource group * | demo v |
Create new

Instance details

Account name * | mydemofhir \/l

.azurehealthcareapis.com

Location * | North Europe v |

FHIR Version * | R4 o |

| Next: Additional settings >

Confirm creation and await FHIR API deployment.

Additional settings (optional)

You can also click Next: Additional settings to view the authentication settings. The default configuration for
the Azure API for FHIR is to use Azure RBAC for assigning data plane roles. When configured in this mode, the
"Authority" for the FHIR service will be set to the Azure Active Directory tenant of the subscription:

Create Azure API for FHIR

Basics * Additional settings* Tags Review + create

Customize additional configuration parameters including authentication and storage.

Authentication

Authority * ‘ https://login.microsoftonline.com/ <tenant id> ’

Audience * ‘ https://documentdemo.azurehealthcareapis.com \/’

Allowed object IDs ®

Use Azure Access Control (IAM) to grant access your FHIR service when
using the subscription tenant for data plane RBAC. Learn more.

SMART on FHIR proxy O E]

Database Settings

Provisioned throughput (RU/s) * © ‘ 400

Review + create | Previous ’ ‘ Next: Tags >

Notice that the box for entering allowed object IDs is grayed out, since we use Azure RBAC for configuring role

assignments in this case.

If you wish to configure the FHIR service to use an external or secondary Azure Active Directory tenant, you can
change the Authority and enter object IDs for user and groups that should be allowed access to the server. For

more information, see the local RBAC configuration guide.

Fetch FHIR API capability statement

To validate that the new FHIR APl account is provisioned, fetch a capability statement by pointing a browser to

https://<ACCOUNT-NAME>.azurehealthcareapis.com/metadata .

Clean up resources

When no longer needed, you can delete the resource group, Azure API for FHIR, and all related resources. To do
so, select the resource group containing the Azure API for FHIR account, select Delete resource group, then
confirm the name of the resource group to delete.

Next steps

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings
in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the

Azure API for FHIR, read more on how to register applications.
Additional settings in Azure API for FHIR

Register Applications Overview

Quickstart: Deploy Azure API for FHIR using

PowerShell

5/28/2021 « 2 minutes to read « Edit Online

In this quickstart, you'll learn how to deploy Azure API for FHIR using PowerShell.

If you don't have an Azure subscription, create a free account before you begin.

Use Azure Cloud Shell

Azure hosts Azure Cloud Shell, an interactive shell environment that you can use through your browser. You can

use either Bash or PowerShell with Cloud Shell to work with Azure services. You can use the Cloud Shell

preinstalled commands to run the code in this article without having to install anything on your local

environment.

To start Azure Cloud Shell:

OPTION

Select Try It in the upper-right corner of a code block.
Selecting Try It doesn't automatically copy the code to
Cloud Shell.

Go to https://shell.azure.com, or select the Launch Cloud
Shell button to open Cloud Shell in your browser.

Select the Cloud Shell button on the menu bar at the
upper right in the Azure portal.

To run the code in this article in Azure Cloud Shell:

1. Start Cloud Shell.

EXAMPLE/LINK

|
Azure Cl M Copy LT

A\ Launch Cloud Shell

2. Select the Copy button on a code block to copy the code.

3. Paste the code into the Cloud Shell session by selecting Ctrl+Shift+V on Windows and Linux or by

selecting Cmd +Shift+V on macOS.

4. Select Enter to run the code.

NOTE

This article has been updated to use the Azure Az PowerShell module. The Az PowerShell module is the recommended
PowerShell module for interacting with Azure. To get started with the Az PowerShell module, see Install Azure PowerShell.

To learn how to migrate to the Az PowerShell module, see Migrate Azure PowerShell from AzureRM to Az.

Register the Azure API for FHIR resource provider

If the Microsoft.HealthcareApis resource provider is not already registered for your subscription, you can

register it with:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-powershell-quickstart.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://shell.azure.com
https://shell.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/migrate-from-azurerm-to-az

Register-AzResourceProvider -ProviderNamespace Microsoft.HealthcareApis

Create Azure resource group

New-AzResourceGroup -Name "myResourceGroupName" -Location westus2

Deploy Azure API for FHIR

New-AzHealthcareApisService -Name nameoffhirservice -ResourceGroupName myResourceGroupName -Location westus2
-Kind fhir-R4

NOTE

Depending on the version of the Az PowerShell module you have installed, the provisioned FHIR server may be
configured to use local RBAC and have the currently signed in PowerShell user set in the list of allowed identity object IDs
for the deployed FHIR service. Going forward, we recommend that you use Azure RBAC for assigning data plane roles and

you may need to delete this users object ID after deployment to enable Azure RBAC mode.

Fetch capability statement

You'll be able to validate that the Azure API for FHIR account is running by fetching a FHIR capability statement:

$metadata = Invoke-WebRequest -Uri "https://nameoffhirservice.azurehealthcareapis.com/metadata”

$metadata.RawContent

Clean up resources

If you're not going to continue to use this application, delete the resource group with the following steps:

Remove-AzResourceGroup -Name myResourceGroupName

Next steps

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings
in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the
Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

Quickstart: Deploy Azure API for FHIR using Azure

CLI

3/11/2021 « 2 minutes to read = Edit Online

In this quickstart, you'll learn how to deploy Azure API for FHIR in Azure using the Azure CLI.

If you don't have an Azure subscription, create a free account before you begin.

Prerequisites
e Use the Bash environment in Azure Cloud Shell.

K\ Launch Cloud Shell

e [fyou prefer, install the Azure CLI to run CLI reference commands.

o If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish
the authentication process, follow the steps displayed in your terminal. For additional sign-in
options, see Sign in with the Azure CLI.

o When you're prompted, install Azure CLI extensions on first use. For more information about
extensions, see Use extensions with the Azure CLI.

o Run az version to find the version and dependent libraries that are installed. To upgrade to the
latest version, run az upgrade.

Add HealthcareAPls extension
az extension add --name healthcareapis
Get a list of commands for HealthcareAPIs:

az healthcareapis --help

Create Azure Resource Group

Pick a name for the resource group that will contain the Azure API for FHIR and create it:

az group create --name "myResourceGroup” --location westus2

Deploy the Azure API for FHIR

az healthcareapis create --resource-group myResourceGroup --name nameoffhiraccount --kind fhir-r4 --location
westus2

Fetch FHIR API capability statement

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-cli-quickstart.md
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index#az_login
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/azure-cli-extensions-overview
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_version
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_upgrade

Obtain a capability statement from the FHIR APl with:

curl --url "https://nameoffhiraccount.azurehealthcareapis.com/metadata”

Clean up resources

If you're not going to continue to use this application, delete the resource group with the following steps:

az group delete --name "myResourceGroup"

Next steps

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings
in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the
Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

Quickstart: Use an ARM template to deploy Azure

API for FHIR

5/28/2021 « 6 minutes to read « Edit Online

In this quickstart, you'll learn how to use an Azure Resource Manager template (ARM template) to deploy Azure

API for Fast Healthcare Interoperability Resources (FHIR(®)). You can deploy Azure API for FHIR through the
Azure portal, PowerShell, or CLI.

An ARM template is a JavaScript Object Notation (JSON) file that defines the infrastructure and configuration for
your project. The template uses declarative syntax. In declarative syntax, you describe your intended deployment
without writing the sequence of programming commands to create the deployment.

If your environment meets the prerequisites and you're familiar with using ARM templates, select the Deploy to
Azure button. The template will open in the Azure portal once you sign in.

AX Deploy to Azure

Prerequisites

e Portal
o PowerShell
o CLI

An Azure account with an active subscription. Create one for free.

Review the template

The template used in this quickstart is from Azure Quickstart Templates.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-arm-template-quickstart.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://portal.azure.com/#create/Microsoft.Template/uri/https%253a%252f%252fraw.githubusercontent.com%252fAzure%252fazure-quickstart-templates%252fmaster%252fquickstarts%252fmicrosoft.healthcareapis%252fazure-api-for-fhir%252fazuredeploy.json
https://azure.microsoft.com/free/
https://azure.microsoft.com/resources/templates/101-azure-api-for-fhir/

"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"serviceName": {
"type": "string",
"metadata": {
"description": "The name of the service."
}
})
"location": {
"type": "string",
"allowedValues": [
"australiaeast",
"eastus",
"eastus2",
"japaneast",
"northcentralus”,
"northeurope”,
"southcentralus"”,
"southeastasia",
"uksouth",
"ukwest",
"westcentralus”,
"westeurope”,
"westus2"
1,
"metadata": {
"description": "Location of Azure API for FHIR"

}
})

"resources": [

{

"type": "Microsoft.HealthcareApis/services",
"apiVersion": "2020-03-15",
"name": "[parameters('serviceName')]",
"location": "[parameters('location')]",
"kind": "fhir-R4",
"properties": {
"authenticationConfiguration": {
"audience": "[concat('https://', parameters('serviceName'), '.azurehealthcareapis.com')]",
"authority": "[uri(environment().authentication.loginEndpoint, subscription().tenantId)]"

The template defines one Azure resource:

e Microsoft.HealthcareApis/services

Deploy the template

e Portal
o PowerShell
o CLI

Select the following link to deploy the Azure API for FHIR using the ARM template in the Azure portal:

AX Deploy to Azure

https://portal.azure.com/#create/Microsoft.Template/uri/https%253a%252f%252fraw.githubusercontent.com%252fAzure%252fazure-quickstart-templates%252fmaster%252fquickstarts%252fmicrosoft.healthcareapis%252fazure-api-for-fhir%252fazuredeploy.json

On the Deploy Azure APl for FHIR page:

1. If you want, change the Subscription from the default to a different subscription.

2. For Resource group, select Create new, enter a name for the new resource group, and select OK.
3. If you created a new resource group, select a Region for the resource group.

4. Enter a new Service Name and choose the Location of the Azure API for FHIR. The location can be the

same as or different from the region of the resource group.

Deploy Azure APl for FHIR - Micr X +

C a portal.azure.com
Microsoft Azure O Search resources, services, and docs (G+/)
Home >
Deploy Azure API for FHIR & X

Azure quickstart template

Basics Review + create

Template

101-azure-api-for-thir @
1 resource / /
Edit template Edit parameters

Deployment scope

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * 0] | Contoso v |

Resource group * (0 | v |

Create new

Parameters

Region * (@ | East US v |

Service Name * (@ | |

Location * () | v |

Review + create Mext : Review + create =

5. Select Review + create.

6. Read the terms and conditions, and then select Create.

NOTE

The deployment takes a few minutes to complete. Note the names for the Azure API for FHIR service and the resource
group, which you use to review the deployed resources later.

Review deployed resources

Portal
PowerShell
CLI

Follow these steps to see an overview of your new Azure API for FHIR service:

1.

2.

In the Azure portal, search for and select Azure API for FHIR.

In the FHIR list, select your new service. The Overview page for the new Azure API for FHIR service

appears.

. To validate that the new FHIR APl account is provisioned, select the link next to FHIR metadata

endpoint to fetch the FHIR API capability statement. The link has a format of
https://<service-name>.azurehealthcareapis.com/metadata . If the account is provisioned, a large JSON file

is displayed.

Clean up resources

When it's no longer needed, delete the resource group, which deletes the resources in the resource group.

4.

Portal
PowerShell
CLI
. Inthe Azure portal, search for and select Resource groups.
In the resource group list, choose the name of your resource group.
In the Overview page of your resource group, select Delete resource group.
In the confirmation dialog box, type the name of your resource group, and then select Delete.

For a step-by-step tutorial that guides you through the process of creating an ARM template, see the tutorial to

create and deploy your first ARM template

Next steps

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings
in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the

Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

https://portal.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-template

Quickstart: Deploy Azure IoT Connector for FHIR

(preview) using Azure portal

4/5/2021 « 6 minutes to read « Edit Online

Azure loT Connector for Fast Healthcare Interoperability Resources (FHIR®))* is an optional feature of Azure API
for FHIR that provides the capability to ingest data from Internet of Medical Things (IoMT) devices. During the
preview phase, Azure loT Connector for FHIR feature is being available for free. In this quickstart, you'll learn
how to:

e Deploy and configure Azure loT Connector for FHIR using the Azure portal
e Use a simulated device to send data to Azure loT Connector for FHIR

e View resources created by Azure loT Connector for FHIR on Azure API for FHIR

Prerequisites

e An active Azure subscription - Create one for free

e Azure API for FHIR resource - Deploy Azure API for FHIR using Azure portal

Go to Azure API for FHIR resource

Open the Azure portal and go to the Azure API for FHIR resource for which you'd like to create the Azure loT
Connector for FHIR feature.

= i i & 7 user@contoso.com @
= Microsoft Azure (Preview) [£oLECELELNT) - P Search resources, services, and docs (G+/) & CoNTosO, D, [l

Home >
Q@ docs-fhir-server X
Azure API for FHIR
P Search (Ctrl+/) « () Refresh —> Move [ii] Delete
‘ @ Overview Resource group (change) : docs-resource-group FHIR metadata endpoint : https://docs-fhi -azurehealthcareapis.c
B Activity log Status Online Provisioned throughput (... : 400

B Access control (AM) Location West Us 2 FHIR Version R4
ubscription (change) : Contoso Subscription 0T Connectors
A Subscription (change) : C Subscripi IoT C
rags
Subscription ID : 88814fc1-fdd6-42bb-9131-9277dbbca3ds
Settings
9 Tags (change) : Click here to add tags
% Authentication A
® cors Links
& Database
& inegration _71 Getting started with your FHIR service.
(I Lear howto access your FHIR senvice.
Identity How to obtain your OAuth access token
B fods How to access your service using Postman

B3 Export template
Add-ins

& 10T Connector (preview)
Monitoring

i Metrics

& Diagnostic settings

#® Logs

Support + troubleshooting

R New support request

On the left-hand navigation menu, click on loT Connector (preview) under the Add-ins section to open the
loT Connectors page.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-fhir-portal-quickstart.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-azure-api-fhir.jpg#lightbox

= Microsoft Azure (Preview) o R iy It} - 9 Search resources, services, and docs (G+/)) user@contoso.com

Home >

» docs-fhir-server | loT Connector (preview) X
Azure API for FHIR

P Search (Ctrl+/) « + Add (D Refresh

@ Overview
View and configure Connectors used to ingest data from Intemet of Things (IoT) into “docs-fhir-server”
& Activity log
Name Status Connections Device mappin FHIR mapping
fa Access control (IAM) Pping PR,
® No results,
fags
Settings
Links
» Authentication
@ CORs -7 Deploy loT Connector using Azure portal
8 Datab (" Leam more about loT Connector
atabase
ToT Connector overview
& Integration Data flow inside loT Connector
Identity
A Locks

B3 Export template

Add-ins

Monitoring

Metrics

Diagnostic settings
#® Logs
Support + troubleshooting

R New support request

Create new Azure loT Connector for FHIR (preview)

Click on the Add button to open the Create loT Connector page.

= Microsoft Azure (Preview) o R ey It} - 9 Search resources, services, and docs (G+/) teiE e

Home >

» docs-fhir-server | loT Connector (preview) X

Azure API for FHIR

0 Search (Ctrl+/) «

@ overview
= View and configure Connectors used to ingest data from Interet of Things (IoT) into “docs-fhir-server"
& Activity log
Name Status Connections Device mappin FHIR mapping
A2 Access control (IAM) i ik
No results.
® Tags
Settings
Links
» Authentication
@ COoRs —71 Deploy IoT Connector using Azure portal
= (" Leam more about loT Connector
@ Database
ToT Connector overview
@ Integration Data flow inside loT Connector
Identity
& Locks

B3 Export template
Add-ins

& 10T Connector (preview)
Monitoring

il Metrics

& Diagnostic settings
#® Logs

Support + troubleshooting

R New support request

Enter settings for the new Azure loT Connector for FHIR. Click on Create button and await Azure loT Connector
for FHIR deployment.

NOTE

Must select Create as the value for the Resolution type drop down for this installation.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connectors.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connectors-add.jpg#lightbox

= : s @ user@contoso.com @
= Microsoft Azure (Preview) % Reporta bug- P Search resources, services, and docs (G+/) S conToso, 0. Ml

Home > docs-fhir-server | IoT Connector (preview) >

» Create loT Connector X

IoT Connector (preview)

Create a new Connector to ingest data from Internet of Things (Io) into “docs-fhir-server”

Connector name * [[docs-iot-connector]

Resolution type * @ [[create M

SETTING VALUE DESCRIPTION

Connector name A unique name Enter a name to identify your Azure
loT Connector for FHIR This name
should be unique within an Azure API
for FHIR resource. The name can only
contain lowercase letters, numbers,
and the hyphen (-) character. It must
start and end with a letter or a
number, and must be between 3-24
characters in length.

Resolution type Lookup or Create Select Lookup if you have an out-of-
band process to create Device and
Patient FHIR resources in your Azure
API for FHIR. Azure loT Connector for
FHIR will use reference to these
resources when creating an
Observation FHIR resource to
represent the device data. Select
Create when you want Azure loT
Connector for FHIR to create bare-
bones Device and Patient resources in
your Azure API for FHIR using
respective identifier values present in
the device data.

Once installation is complete, the newly created Azure loT Connector for FHIR will show up on the loT
Connectors page.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-create.jpg#lightbox
https://www.hl7.org/fhir/device.html
https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/observation.html

= Microsoft Azure (Preview) [o Nl ey bug- P Search resources, services, and docs (G+/) user@contoso.com

Home >

» docs-fhir-server | loT Connector (preview) %
Azure API for FHIR

P Search (Ctrl+/) « + Add () Refresh

@ overview

View and configure Connectors used to ingest data from Intemet of Things (IoT) into “docs-fhir-server”
& Activity log

Name Status Connections Device mappin FHIR mappin
A2 Access control (IAM) pping pping
® Tags docs-iot-connector Online 0 [x] [%]
Settings

Links
» Authentication
& CORs -7 Deploy IoT Connector using Azure portal
. (" Leam more about loT Connector
& Database

IoT Connector overview
@ Integration Data flow inside loT Connector
Identity

8 Locks

E3 Export template

Add-ins

& 10T Connector (preview)

Monitoring

Metrics

& Diagnostic settings
i® Logs

Support + troubleshooting

2 New support request

Configure Azure loT Connector for FHIR (preview)

Azure loT Connector for FHIR needs two mapping templates to transform device messages into FHIR-based
Observation resource(s): device mapping and FHIR mapping. Your Azure loT Connector for FHIR isn't fully
operational until these mappings are uploaded.

= Microsoft Azure (Preview) [oILCoie) bug- O search resources, services, and docs (G+/) user@contos

Home >

» docs-fhir-server | loT Connector (preview) X
Azure API for FHIR

P Search (Ctrl+/) « 4+ Add () Refresh

@ overview
£ View and configure Connectors used to ingest data from Internet of Things (1oT) into “docs-fhir-server"
& Activity log

Name Status Connections Device mappin FHIR mappin
Ba. Access control (AM) it ppng
® Tags docs-iot-connector Online 0 [x] [x]
Settings.

Links
® Authentication
& cors —71 Deploy IoT Connector using Azure portal
» [Leam more about loT Connector
& Database

10T Connector overview

@ Integration Data flow inside loT Connector
, Identity
& Locks

B2 Export template
Add-ins

& 0T Connector (preview)
Monitoring

fill Metrics

@ Diagnostic settings
#® Logs

Support + troubleshooting

R New support request

To upload mapping templates, click on the newly deployed Azure loT Connector for FHIR to go to the loT
Connector page.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-created.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-missing-mappings.jpg#lightbox

= Microsoft Azure (Preview) ol uey bug- P Search resources, services, and docs (G+/) I==@contczoom

Home >

» docs-fhir-server | IoT Connector (preview) X
Azure APl for FHIR

P Search (Ctrl+/) « + Add () Refresh

@ overview
View and configure Connectors used to ingest data from Intemet of Things (IoT) into “docs-fhir-server”
& Activity log

Name Status Connections Device mapping FHIR mapping

Online 0 [X] [%]

A2 Access control (IAM)

® Tags
Settings

Links
% Authentication
& CORs -7 Deploy loT Connector using Azure portal
o (" Leam more about loT Connector
& Database

IoT Connector overview

@ Integration Data flow inside loT Connector
» Identity
A Locks

E3 Export template
Add-ins

& 10T Connector (preview)
Monitoring

fidl Metrics

& Diagnostic settings
i® Logs

Support + troubleshooting

2 New support request

Device mapping
Device mapping template transforms device data into a normalized schema. On the loT Connector page, click
on Configure device mapping button to go to the Device mapping page.

Microsoft Azure (Preview) % Reporta bug- £ Search resources, services, and docs (G+/) © user@co(ro\:lotz

Home > docs-fhir-server | IoT Connector (preview) >

» docs-iot-connector X

loT Connector (preview)

d () Refresh [i] Delete ¢ Manage client connections Configure FHIR mapping

Configure an existing Connector to ingest data from Internet of Things (IoT) into “docs-fhir-server”

Resolution type * O Create v

Links

-7 loT Connector mapping templates
' Loarm how to conect loT devicss

Connecting loT devices through Azure loT Hub

On the Device mapping page, add the following script to the JSON editor and click Save.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click-device-mapping.jpg#lightbox

"templateType": "CollectionContent",
"template": [
{
"templateType": "IotJsonPathContent",
"template": {
"typeName": "heartrate",
"typeMatchExpression": "$..[?(@Body.telemetry.HeartRate)]",
"patientIdExpression": "$.Properties.iotcentral-device-id",
"values": [

{
"required": "true",
"valueExpression": "$.Body.telemetry.HeartRate",

"valueName": "hr"

= i i Report a bu Search resources, services, and docs (G+ 2 user@contoso.com @
Microsoft Azure (Preview) FeLC LI ELIT] pel (G+/) T

Home > docs-fhir-server | loT Connector (preview) > docs-iot-connector >

» Device mapping

IoT Connector (preview)

wve | X Discard () Refresh

View and configure device mapping associated with "docs-iot-connector” loT Connector

1 |
2 "templateType": "CollectionContent”,

3 “template": [

4 {

5 “templateType": "IotJsonPathContent”,

s “template": {

7 “typeName": "heartrate",

s “typeMatchExpression” .[?(@Body. HeartRate)]",

s “patientIdExpression” Gerties s jon-deyica-10";

10 "values": [

1 {

12 “required": "true",

13 "valueExpression”: "$.Body.HeartRate",

14 "valueName": "hr"

15 }

16 1

17 }

18 }

19 1

2 9 r

FHIR mapping
FHIR mapping template transforms a normalized message to a FHIR-based Observation resource. On the loT

Connector page, click on Configure FHIR mapping button to go to the FHIR mapping page.

_ > 8 . @ 7 (@ user@contosocom
= Microsoft Azure (Preview) &} Reporta bug- P Search resources, services, and docs (G+/) ! © conToso, uo. il
>

Home > docs-fhir-server | IoT Connector (preview)

» docs-iot-connector X
loT Connector (preview)

[5] save X Discard () Refresh [il] Delete ¢ Manage client connections 53 Configure device mapping | €83 Configure FHIR mapping

Configure an existing Connector to ingest data from Internet of Things (IoT) into “docs-fhir-server”

Resolution type * © Create v

Links

—71 IoT Connector mapping templates
(4" Learm howto connectloT devices

Connecting loT devices through Azure IoT Hub

On the FHIR mapping page, add the following script to the JSON editor and click Save.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-device-mapping.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click-fhir-mapping.jpg#lightbox

"templateType": "CollectionFhir",
"template": [
{
"templateType": "CodeValueFhir",
"template": {
"codes": [
{
"code": "8867-4",
"system": "http://loinc.org",
"display": "Heart rate"
}
1,
"periodInterval": o,
"typeName": "heartrate"”,
"value": {
"unit": "count/min",
"valueName": "hr",
"valueType": "Quantity"

e i = Ly) user@contoso.com

Home > docs-fhir-server | loT Connector (preview) > docs-iot-connector >
o FHIR mapping X

IoT Connector (preview)

X Discard () Refresh

View and configure FHIR mapping associated with “docs-iot-connector" IoT Connector

1 |

2 "templateType": "CollectionFhir",

3 "template": [

4 <

5 "templateType": "CodeValueFhir",

6 “"template": {

7

8

9

1e

11

12

13

14

15

16

17

18 "valueName

19 "valueTyp:

20 }

21 }

22 }

23 1

2 r

Generate a connection string

IoMT device needs a connection string to connect and send messages to Azure loT Connector for FHIR. On the
loT Connector page for the newly deployed Azure loT Connector for FHIR, select Manage client

connections button.

= : ; = 5 user@contoso.com @
= Microsoft Azure (Preview) [FeSLE-IIE) bug- P Search resources, services, and docs (G+/) 7 € Coniros e (N

Home > docs-fhir-server | [T Connector (preview) >

» docs-iot-connector X
loT Connector (preview)
[&)] save X Discard () Refresh [il] Delete | &' Manage client connections | €3 Configure device mapping €33 Configure FHIR mapping
Configure an existing Connector to ingest data from Internet of Things (IoT) into "docs-fhir-server”
Resolution type * [[create ~
Links

7I 10T Connector mapping templates
(" Learm howto connectloT devices

Connecting loT devices through Azure loT Hub

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-fhir-mapping.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click-client-connections.jpg#lightbox

Once on Connections page, click on Add button to create a new connection.

= = = T T e e =) user@contoso.com @
Microsoft Azure (Preview) o liECH g- £ Search resources, services, and docs (G+/) conToso, Lo, [l

Home > docs-fhir-server | IoT Connector (preview) > docs-iot-connector >

» Connections X

loT Connector (preview)

+ Add |(D Refresh

View and configure connections associated with "docs-iot-connector” loT Connector

[0 Search to fiter tems

No results.

Provide a friendly name for this connection on the overlay window and select the Create button.

= . s .) user@contoso.com @
= Microsoft Azure (Preview) [fe} Rgponahug- P Search resources, services, and docs (G+/) [conToso, LD, [l

Home > docs-fhir-server | IoT Connector (preview) > docs-iot-connector > Create connection X
é? Connections 10T Connector (preview)
10T Connector (preview)
Connection name *

Heada’ 1 Reesn docs-connection %
View and configure connections associated with “docs-iot-connector” loT Connector

P Search to filter items.

No results.

Select the newly created connection from the Connections page and copy the value of Primary connection
string field from the overlay window on the right.

= Microsoft Azure (Preview) % Reporta bug- P Search resources, services, and docs (G+/) = 5 2?2 © user@contoso.com @

conoso, tro.

Home > docs-fhir-server | loT Connector (preview) > docs-iot-connector > Connection: docs-connection X

» Connections IoT Connector (preview)

IoT Connector (preview)

+ Add () Refresh

[i] Delete () Regenerate PrimaryKey ---

Primary key ©
[+hogK8vspPbYHCm2TSzkq3cof rSxkeCnAi23PweD0s= b |

View and configure connections associated with “docs-iot-connector" IoT Connector

[P search tofilter items. Secondary key ©
| bT3DIATTYeU25nxqKvFCSFBZKDESK8pI3KNRBNXBEGo= D:]

docs-connection X o
Primary connection string ©

p a |]
—l

Secondary connection string
[Endp 1bng D]

Preserve this connection string to be used at a later step.

Connect your devices to loT

Azure offers an extensive suite of loT products to connect and manage your loT devices. You can build your own
solution based on Paa$S using Azure loT Hub, or start with a manage loT apps platform with Azure loT Central.
For this tutorial, we'll leverage Azure loT Central, which has industry-focused solution templates to help you get

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connections.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-new-connection.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connection-string.jpg#lightbox

started.

Deploy the Continuous patient monitoring application template. This template includes two simulated devices
producing real-time data to help you get started: Smart Vitals Patch and Smart Knee Brace.

NOTE

Whenever your real devices are ready, you can use same loT Central application to onboard your devices and replace

device simulators. Your device data will automatically start flowing to FHIR as well.

Connect your loT data with the Azure loT Connector for FHIR
(preview)

Once you've deployed your loT Central application, your two out-of-the-box simulated devices will start
generating telemetry. For this tutorial, we'll ingest the telemetry from Smart Vitals Patch simulator into FHIR via
the Azure loT Connector for FHIR. To export your loT data to the Azure loT Connector for FHIR, we'll want to set
up a continuous data export within loT Central. We'll first need to create a connection to the destination, and
then we'll create a data export job to continuously run:

NOTE

You will want to select Data export vs. Data export (legacy) within the loT Central App settings for this section.

Continuous patient monitoring gzmq58bwyj 2 Search

Data export

Dashboard
Exports Destinations
@ Devices
Device groups New destination
Rules
Z Analytics
Jobs
App settings
Device templates
<z Data export
& Data export (legacy)

Add a destination
Administration
Continuously export your filtered and enriched loT data to
other parts of your cloud solution for warm-path insights,
analytics, visualization, and storage. Lear ore Cf

Create a new destination:

e Go to the Destinations tab and create a new destination.
e Start by giving your destination a unique name.
e Pick Azure Event Hubs as the destination type.

e Provide Azure loT Connector for FHIR's connection string obtained in a previous step for the Connection
string field.

Create a new data export:

e Once you've created your destination, go over to the Exports tab and create a new data export.

e Start by giving it the data export a unique name.

https://docs.microsoft.com/en-us/azure/iot-central/healthcare/tutorial-continuous-patient-monitoring
https://docs.microsoft.com/en-us/azure/iot-central/core/howto-set-up-template
https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/iot-central-data-export-dashboard.png#lightbox

e Under Data select Telemetry as the Type of data to export.

e Under Destination select the destination name you created in the previous name.

View device data in Azure API for FHIR

You can view the FHIR-based Observation resource(s) created by Azure loT Connector for FHIR on Azure API for
FHIR using Postman. Set up your Postman to access Azure AP| for FHIR and make a GeT request to

https://your-fhir-server-url/Observation?code=http://loinc.org|8867-4 to view Observation FHIR resources

with heart rate value.

TIP
Ensure that your user has appropriate access to Azure API for FHIR data plane. Use Azure role-based access control

(Azure RBAC) to assign required data plane roles.

Clean up resources

When no longer needed, you can delete an instance of Azure loT Connector for FHIR by removing the associated
resource group, or the associated Azure API for FHIR service, or the Azure loT Connector for FHIR instance itself.

To directly remove an Azure loT Connector for FHIR instance, select the instance from 1oT Connectors page to
go toloT Connector page and click on Delete button. Select Yes when asked for confirmation.

= Microsoft Azure (Preview) [fo} R&ponabug- O Search resources, services, and docs (G+/) B & @) user@cocg:‘?(sg,octl)'r: [)

Home > docs-fhir-server | oT Connector (preview) >

X

» docs-i

IoT Connect

& save X Discard () Refresh & Manage client connections £33 Configure device mapping £33 Configure FHIR mapping

Configure an existing Connector to ingest data from Internet of Things (IoT) into “docs-fhir-server”

connector

tor (previe

Resolution type * © [(create

Links.

@ 10T Connector mapping templates

Learn how to connect loT devices

Connecting loT devices through Azure IoT Hub

Next steps

In this quickstart guide, you've deployed Azure loT Connector for FHIR feature in your Azure API for FHIR
resource. Select from below next steps to learn more about Azure loT Connector for FHIR:

Understand different stages of data flow within Azure loT Connector for FHIR.
Azure loT Connector for FHIR data flow

Learn how to configure loT Connector using device and FHIR mapping templates.
Azure loT Connector for FHIR mapping templates

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-delete.jpg#lightbox

Quickstart: Use an Azure Resource Manager (ARM)
template to deploy Azure IoT Connector for FHIR

(JEYEW

5/28/2021 « 11 minutes to read + Edit Online

In this quickstart, you'll learn how to use an Azure Resource Manager template (ARM template) to deploy Azure
loT Connector for Fast Healthcare Interoperability Resources (FHIR®))*, a feature of Azure API for FHIR. To
deploy a working instance of Azure loT Connector for FHIR, this template also deploys a parent Azure API for
FHIR service and an Azure IoT Central application that exports telemetry from a device simulator to Azure loT
Connector for FHIR. You can execute ARM template to deploy Azure IoT Connector for FHIR through the Azure
portal, PowerShell, or CLI.

An ARM template is a JavaScript Object Notation (JSON) file that defines the infrastructure and configuration for
your project. The template uses declarative syntax. In declarative syntax, you describe your intended deployment
without writing the sequence of programming commands to create the deployment.

If your environment meets the prerequisites and you're familiar with using ARM templates, select the Deploy to
Azure button. The template will open in the Azure portal once you sign in.

AX Deploy to Azure

Prerequisites

e Portal
o PowerShell
o CLI

An Azure account with an active subscription. Create one for free.

Review the template

The template defines following Azure resources:

e Microsoft.HealthcareApis/services
e Microsoft.HealthcareApis/services/iomtconnectors

e Microsoft.loTCentral/loTApps

Deploy the template

e Portal
o PowerShell

e CLI

Select the following link to deploy the Azure IoT Connector for FHIR using the ARM template in the Azure portal:

& Deploy to Azure

On the Deploy Azure API for FHIR page:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-fhir-arm-template-quickstart.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://portal.azure.com/#create/Microsoft.Template/uri/https%253A%252F%252Fraw.githubusercontent.com%252Fmicrosoft%252Fiomt-fhir%252Fmaster%252Fdeploy%252Ftemplates%252Fmanaged%252Fazuredeploy.json
https://azure.microsoft.com/free/
https://raw.githubusercontent.com/microsoft/iomt-fhir/master/deploy/templates/managed/azuredeploy.json
https://portal.azure.com/#create/Microsoft.Template/uri/https%253A%252F%252Fraw.githubusercontent.com%252Fmicrosoft%252Fiomt-fhir%252Fmaster%252Fdeploy%252Ftemplates%252Fmanaged%252Fazuredeploy.json

. If you want, change the Subscription from the default to a different subscription.

2. For Resource group, select Create new, enter a name for the new resource group, and select OK.

3. If you created a new resource group, select a Region for the resource group.

4. Enter a name for your new Azure API for FHIR instance in FHIR Service Name.

5. Choose the Location for your Azure API for FHIR. The location can be the same as or different from the
region of the resource group.

6. Provide a name for your Azure loT Connector for FHIR instance in lot Connector Name.

7. Provide a name for a connection created within Azure loT Connector for FHIR in Connection Name. This
connection is used by Azure loT Central application to push simulated device telemetry into Azure loT
Connector for FHIR.

8. Enter a name for your new Azure loT Central application in lot Central Name. This application will use
Continuous patient monitoring template to simulate a device.

9. Choose the location of your loT Central application from loT Central Location drop-down.

10. SelectReview + create.
11. Read the terms and conditions, and then select Create.
NOTE

The deployment takes a few minutes to complete. Note the names for the Azure API for FHIR service, Azure loT Central
application, and the resource group, which you use to review the deployed resources later.

Review deployed resources

e Portal

o PowerShell
o CLI

Follow these steps to see an overview of your new Azure API for FHIR service:

1.

2.

In the Azure portal, search for and select Azure API for FHIR.

In the FHIR list, select your new service. The Overview page for the new Azure API for FHIR service
appears.

. To validate that the new FHIR APl account is provisioned, select the link next to FHIR metadata

endpoint to fetch the FHIR API capability statement. The link has a format of
https://<service-name>.azurehealthcareapis.com/metadata . If the account is provisioned, a large JSON file

is displayed.

To validate that the new Azure loT Connector for FHIR is provisioned, select the loT Connector
(preview) from left navigation menu to open the loT Connectors page. The page must show the
provisioned Azure loT Connector for FHIR with Status value as Online, Connections value as 7, and both
Device mapping and FHIR mapping show Success icon.

. In the Azure portal, search for and select loT Central Applications.

In the list of loT Central Applications, select your new service. The Overview page for the new IoT Central
application appears.

https://portal.azure.com
https://portal.azure.com

Connect your loT data with the Azure loT Connector for FHIR
(preview)

IMPORTANT
The Device mapping template provided in this guide is designed to work with Data Export (legacy) within IoT Central.

loT Central application currently doesn't provide ARM template or PowerShell and CLI commands to set data

export. So, follow the instructions below using Azure portal.

Once you've deployed your loT Central application, your two out-of-the-box simulated devices will start
generating telemetry. For this tutorial, we'll ingest the telemetry from Smart Vitals Patch simulator into FHIR via
the Azure loT Connector for FHIR. To export your loT data to the Azure loT Connector for FHIR, we'll want to set
up a Data export (legacy) within loT Central. On the Data export (legacy) page:

e Pick Azure Event Hubs as the export destination.

Select Use a connection string value for Event Hubs namespace field.

Provide Azure loT Connector for FHIR's connection string obtained in a previous step for the Connection
String field.

Keep Telemetry option On for Data to Export field.

View device data in Azure API for FHIR

You can view the FHIR-based Observation resource(s) created by Azure loT Connector for FHIR on your FHIR
server using Postman. Set up your Postman to access Azure AP| for FHIR and make a GeT request to
https://your-fhir-server-url/Observation?code=http://loinc.org|8867-4 to view Observation FHIR resources

with heart rate value.

TIP

Ensure that your user has appropriate access to Azure API for FHIR data plane. Use Azure role-based access control
(Azure RBAC) to assign required data plane roles.

Clean up resources

When it's no longer needed, delete the resource group, which deletes the resources in the resource group.

e Portal
o PowerShell

e CLI

1. In the Azure portal, search for and select Resource groups.

2. In the resource group list, choose the name of your resource group.

3. Inthe Overview page of your resource group, select Delete resource group.

4. In the confirmation dialog box, type the name of your resource group, and then select Delete.

For a step-by-step tutorial that guides you through the process of creating an ARM template, see the tutorial to
create and deploy your first ARM template

https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data-legacy
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-template

Next steps

In this quickstart guide, you've deployed Azure loT Connector for FHIR feature in your Azure API for FHIR

resource. Select from below next steps to learn more about Azure loT Connector for FHIR:
Understand different stages of data flow within Azure loT Connector for FHIR.

Azure loT Connector for FHIR data flow

Learn how to configure loT Connector using device and FHIR mapping templates.

Azure loT Connector for FHIR mapping templates

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Deploy JavaScript app to read data from FHIR

service

3/11/2021 « 2 minutes to read = Edit Online

In this tutorial, you will deploy a small JavaScript app, which reads data from a FHIR service. The steps in this
tutorial are:

1. Deploy a FHIR server
2. Register a public client application
3. Test access to the application

4. Create a web application that reads this FHIR data

Prerequisites

Before starting this set of tutorials, you will need the following items:

1. An Azure subscription
2. An Azure Active Directory tenant

3. Postman installed

NOTE

For this tutorial, the FHIR service, Azure AD application, and Azure AD users are all in the same Azure AD tenant. If this is
not the case, you can still follow along with this tutorial, but may need to dive into some of the referenced documents to
do additional steps.

Deploy Azure API for FHIR

The first step in the tutorial is to get your Azure API for FHIR setup correctly.

1. If you haven't already, deploy the Azure API for FHIR.

2. Once you have your Azure API for FHIR deployed, configure the CORS settings by going to your Azure API
for FHIR and selecting CORS.

. SetOrigins to *

a
b. SetHeaders to *

0

. Under Methods, choose Select all
. Set the Max age to 600

o

Next Steps
Now that you have your Azure API for FHIR deployed, you are ready to register a public client application.

Register public client application

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-fhir-server.md
https://www.getpostman.com/

Client application registration

3/11/2021 « 2 minutes to read ¢ Edit Online

In the previous tutorial, you deployed and set up your Azure API for FHIR. Now that you have your Azure API for
FHIR setup, we will register a public client application. You can read through the full register a public client app
how-to guide for more details or troubleshooting, but we have called out the major steps for this tutorial below.

1. Navigate to Azure Active Directory
2. Select App Registration --> New Registration
3. Name your application

4. Select Public client/native (mobile & desktop) and set the redirect URI to
https://www.getpostman.com/oauth2/callback .

Register an application

* Name

The user-facing display name for this application (this can be changed later).

thir-public-client-app v

Supported account types

Who can use this application or access this API?

@ Accounts in this organizational directory only (CaitlinFHIR1 only - Single tenant)
O Accounts in any organizational directory (Any Azure AD directory - Multitenant)

O Accounts in any organizational directory (Any Azure AD directory - Multitenant) and personal Microsoft accounts (e.g. Skype, Xbox)

Help me choose...

Redirect URI (optional)

We'll return the authentication response to this URI after successfully authenticating the user. Providing this now is optional and it can be
changed later, but a value is required for most authentication scenarios.

| Public client/native (mobile ... | { https://www.getpostman.com/oauth2/callback v

By proceeding, you agree to the Microsoft Platform Policies '

Client application settings

Once your client application is registered, copy the Application (client) ID and the Tenant ID from the Overview
Page. You will need these two values later when accessing the client.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-public-app-reg.md

]i[Delete @' Endpoints
0 Got a second? We would love your feedback on Microsoft identity platform (previously Azure AD for developer). =

Display name ¢ LunarHealthcareClient

riew)

Application (client) ID : Example application ID Redirect URIs

Directory (tenant) ID Example directory ID

Object ID Example abject 1D

b

Connect with web app

If you have written your web app to connect with the Azure API for FHIR, you also need to set the correct
authentication options.

1. In the left menu, under Manage, select Authentication.
2. To add a new platform configuration, select Web.

3. Set up the redirect URI in preparation for when you create your web application in the fourth part of this
tutorial. To do this, add https://\<WEB-APP-NAME>.azurewebsites.net to the redirect URI list. If you choose a
different name during the step where you write your web app, you will need to come back and update
this.

4. Select the Access Token and ID token check boxes.

App registrations > = Con igure Web X
theareClient | Authentication =
< All platforms. Quickstart Docs!

« & save X Discard C? Got feedback?

Redirect URIs
Platform configurations The URIs that we will accapt as destinations when returning authentication responses
(tokens) after successfully authenticating users. Also referred to as reply URLs. Lean mare
Depending on the platform or device this applicaj

targeting, additional configuration may be required such as about Redirect URIs and their restrictions

Supported accoL

Application ID U

Managed applic:

oreview) redirect URIs, specific authentication settings,gfElds specific to the platform.
https://hcapi b, ites.net o
Add a platform
Logout URL
~ Mobile and desktop applications This is where we send a request to have the application clear the user's session data. This is
Redirect URls: 1 required for single sign-out to work correctly.
[eg. httpsy//myapp.com/lagout
Supported account types
Who can use this application or access this API? Implicit grant
- B,) o Allows an application ta request a token directly from the authorization endpoint. Checking
(@ Accounts in this organizationl directory only (Chun Lin Goh anly - Single tenant) Access tokens and ID takens is recommended only if the zpplication has a single-page
O Accounts in any organizational directory (Any Azure AD directory - Multitenant) architecture (SPA), has no back-end components, does not use the latest version of MSALjs
with auth code flow, or it invokes a web API via JavaScript. ID Token is needed for ASP.NET
ors (Preview) Help me decide.. Core Web Apps. Learn mare about the implicit grant flow
A\ Due to temporary differences in supported functionality, we don't recommend enabling personal Microsoft To enable the implicit grant flow, select the tokens you would like to be issued by the
0 accounts for an existing registration. If you need to enable personal accounts, you can do so using the manifest suthodzation endpaint:

editor. Learn more about these restrictions.
Advanced settings
Default client type &

Treat application as a public client. Yes No
Required for the use of the following flows where a redirect URI is not used:

* Resource owner password credential (ROPC) Learn more =7

Access tokens

1D tokens

Add API permissions

Now that you have setup the correct authentication, set the APl permissions:

1. Select APl permissions and click Add a permission.
2. Under APIs my organization uses, search for Azure Healthcare APIs.

3. Selectuser_impersonation and clickadd permissions.

Home >User | App registrations >
- LunarHealthcareClient | APl permissions =

£ Search (Cmd+/) «

i Overview

() Refresh

Configured permissions
& Quickstart

" Integration assistant (preview) all the parmissions the application need:

Applications are authorized to call APIs when

Request APl permissions

€ All APIs
. Azure Healthcare APls
hitps://azurehealthcareapis.us

What type of plgmissions does your application require?

‘Granted permissians by us
‘more about permissions and cor

Delegated permisons

Your application nels to access the API as the signed-in user,

Grant admin consent for Chun Lin Goh |

permissions

Your application runs as a backgrou
signed-in user

ervice or daemon withol

Manage
B Branding API / Permissions name Type Description Select permiasions
D Authentication ~ Azure Healthcare AP (1} [Type to search hY

Permission Admin consent requ

¥ Certificates & secrets user_impersanation

m i
If Token configuration, “Microsaft Graph (1)

User.Read

& Roles and administrators (Preview)

i Manifest

Support + Troubleshooting
&# Troubleshooting

2 New support request

Next Steps

Delegated Access Azure Healthcare
| user_impersonation
Access Azure Healthcare APIs (O

Delegated Sign in and read user pr

You now have a public client application. In the next tutorial, we will walk through testing and gaining access to

this application through Postman.

Test client application in Postman

Testing the FHIR API

3/11/2021 « 2 minutes to read ¢ Edit Online

In the previous two steps, you deployed the Azure API for FHIR and registered your client application. You are
now ready to test that your Azure API for FHIR is set up with your client application.

Retrieve capability statement

First we will get the capability statement for your Azure API for FHIR.

1. Open Postman

2. Retrieve the capability statement by doing GET https://<FHIR-SERVER-
NAME > .azurehealthcareapis.com/metadata. In the image below the FHIR server name is fhirserver.

GET v https://fhirserver.azurehealthcareapis.com/metadata m

Params Authorization @ Headers (10) Body @ Pre-request Script ests Settings

Query Params

KEY VALUE DESCRIPTION
Body Cookies Headers(8) Test Results Status: 2000K Time: 2.17s Size: 964.59 KB Save
Pretty Ra Previev isualize BETA JSON ¥ =
1
2 "resourceType”: "CapabilityStatement”,
3 "url™: "/metadata”,
a "version": "1.0.0.0",
5 "name": "Microsoft FHIR Sserver",
Wk aban . Wgafan

Next we will attempt to retrieve a patient. To retrieve a patient, enter GET https://<FHIR-SERVER-
NAME> .azurehealthcareapis.com/Patient. You will receive a 401 Unauthorized error. This error is because you
haven't proven that you should have access to patient data.

Get patient from FHIR server

GET v https://fhirserver.azurehealthcareapis.com/Patient m

Params Authorizat L) Headers (10) Body @ Pre-request Script est:

Query Params

KEY VALUE DESCRIPTION
Body Cookies Headers(9) Test Results Status: 401 Unauthorized ~ Time: 721ms Size: 626 B Save

Pretty Previev sualizeBETA JsON v

1

2 "resourceType"”: "Operationoutcome",

3 "id": "eaa395e1f99b3849a65c583758a3cobo",

4 "issue": [

5 {

6 "severity": “error”,

7 "code": "login",

8 "diagnostics™: "Authentication failed.”

9 }

10]

11 ¥

In order to gain access, you need an access token.

1. In Postman, select Authorization and set the Type to OAuth2.0

2. Select Get New Access Token

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-test-postman.md

3. Fill in the fields and select Request Token. Below you can see the values for each field for this tutorial.

FIELD

Token Name
Grant Type
Callback URL

Auth URL

Access Token URL

Client ID

Client Secret

Scope

State

Client Authentication

4. Sign in with your credentials and select Accept

5. Scroll down on the result and select Use Token

VALUE

A name for your token

Authorization Code

https://www.getpostman.com/oauth?2/callback

https://login.microsoftonline.com/<AZURE-AD-TENANT-
ID> /oauth2/?resource=https://<FHIR-SERVER-
NAME> .azurehealthcareapis.com

https://login.microsoftonline.com/<AZURE-AD-TENANT-
ID>/oauth2/token

The client ID that you copied during the previous steps

<BLANK>

<BLANK>

1234

Send client credentials in body

6. Select Send again at the top and this time you should get a result

GET v https://fhirserver.azurehealthcareapis.com/Patient m
Authorization @ (10) [)
TYPE o Heads up! These parameters hold sensitive data. To keep this data secure while working in a collaborative environment, we
OAuth 2.0 . recommend using variables. Learn more about variables

The authorization data will be automatically
generated when you send the request. Learn more Access Token
about authorization

Add authorization data to

Request Headers v
Preview Request
Body (10)
Pretty BETA j5ON v 5
1
2 "resourceType”: "Bundle",
3 "id": "164a12es57fagfo47a65e4c03edalfs519",

Post patient into FHIR server

ey)0eXAiOiJKV1QiLCJhbGciOi|SUzI1Nilsing1dCl6InBpVmxsb1FEU... Available T

Get New Access Token

Status: 200 0K Time: 720ms Size: 1.09 KB Save

Now you have access, you can create a new patient. Here is a sample of a simple patient you can add into your

FHIR server. Enter the code below into the Body section of Postman.

This POST will create a new patient in your FHIR server with the name James Tiberious Kirk.

POST

20

Body

Pretty

SW® NGOV A WNE

If you do the GET step above to retrieve a patient again, you will see James Tiberious Kirk listed in the output.

Troubleshooting access issues

If you ran into issues during any of these steps, review the documents we have put together on Azure Active

{

"resourceType": "Patient",
"active": true,
"name": [

{

use": "official",
"family": "Kirk",
"given": [
"James",
"Tiberious"
]
s
{

use": "usual",
"given": [
"Jim"
]
}
1
"gender": "male",
"birthDate": "1960-12-25"

v https://fhirserver.azurehea\thtareapis.tom/Patiend

[] (10) Body ®

form-data x-www-form-urlencoded

"resourceType”: "Patient”,
"active": true,
"name”: [

{
"use™: "official”,
"family": "Kirk",
"given": [
"James",
"Tiberious”

"gender": "male",

Mladmdlnas A T

(13)

BETA JSON

"resourceType": "Patient",

® raw

v

"id": "aafef7es-ebfe-4af2-bdie-39ffc522796c",

"meta": {
"versionId": "1",

"lastUpdated": "2020-01-03T22:49:07.826+00:00"

8
"active": true,
"name": [

I

Directory and the Azure API for FHIR.

=

binary

GraphQL

BETA

JSON

-

Status: 201 Created

Time: 710ms

Size: 906 B

e Azure AD and Azure API for FHIR - This document outlines some of the basic principles of Azure Active

Directory and how it interacts with the Azure API for FHIR.

Save

e Access token validation - This how-to guide gives more specific details on access token validation and steps

to take to resolve access issues.

Next Steps

Now that you can successfully connect to your client application, you are ready to write your web application.

Write a web application

Write Azure web application to read FHIR data

3/11/2021 « 2 minutes to read ¢ Edit Online

Now that you are able to connect to your FHIR server and POST data, you are ready to write a web application

that will read FHIR data. In this final step of the tutorial, we will walk through writing and accessing the web
application.

Create web application

In Azure, select Create a resource and select Web App. Make sure to name your web application whatever

you specified in the redirect URI for your client application or go back and update the redirect URI with the new
name.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-write-web-app.md

Web App

Basics Monitoring Tags Review + create

App Service Web Apps lets you quickly build, deploy, and scale enterprise-grade web, mobile, and APl apps running on
any platform. Meet rigorous performance, scalability, security and compliance requirements while using a fully managed
platform to perform infrastructure maintenance. Learn more (4

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription * (@ | CV-VSE hd |

I— Resource Group * (D) | FHIR1 ~ |
Create new

Instance Details

Name * | hcapidocswebapp ~

.azurewebsites.net

Publish * (c iner)
ublis | Docker Container)
Runtime stack * [.NET Core 3.0 (Current) v |
Operating System * (L i s)
P g Sy, {_ Linux I
Region * | Central US hd |

@ Not finding your App Service Plan? Try a different region.

App Service Plan

App Service plan pricing tier determines the location, features, cost and compute resources associated with your app.
Learn more [4

Windows Plan (Central US) * (& {Mew) ASP-FHIR1-baba ~
Create new
Sku and size * Standard 51

100 total ACU, 1.75 GB memory
Change size

< Previous Next : Monitoring =

Once the web application is available, Go to resource. Select App Service Editor (Preview) under
Development Tools on the right and then select Go. Selecting Go will open up the App Service Editor. Right click
in the grey space under Explore and create a new file called index.html.

Below is the code that you can input into index.html. You will need to update the following items:

e clientld - Update with your client application ID. This ID will be the same ID you pulled when retrieving your
token

e authority - Update with your Azure AD tenant ID
e FHIRendpoint - Update the FHIRendpoint to have your FHIR service name

e scopes - Update to reflect the full URL for your audience

<!DOCTYPE html>
<html>

<head>

<title>FHIR Patient browser sample app</title>

<script src="https://secure.aadcdn.microsoftonline-p.com/1ib/1.0.0/js/msal.js"></script>
</head>

<body>
<div class="leftContainer">
<p id="WelcomeMessage">Welcome to the FHIR Patient browsing sample Application</p>
<button id="SignIn" onclick="signIn()">Sign In</button>
</div>

<div id="patientTable">
</div>

<script>
var msalConfig = {
auth: {
clientId: '<CLIENT-ID>',
authority: "https://login.microsoftonline.com/<AZURE-AD-TENANT-ID>"

s

cache: {
cachelLocation: "localStorage",
storeAuthStateInCookie: true

}

var FHIRConfig = {
FHIRendpoint: "https://<FHIR-SERVER-NAME>.azurehealthcareapis.com"
}
var requestObj = {
scopes: ["https://<FHIR-SERVER-NAME>.azurehealthcareapis.com/user_impersonation"]

function authRedirectCallBack(error, response) {
if (error) {
console.log(error);

} else {
if (response.tokenType === "access_token") {
callFHIRServer(FHIRConfig.FHIRendpoint + '/Patient', 'GET', null, response.accessToken,
FHIRCallback);
}
}

var myMSALObj = new Msal.UserAgentApplication(msalConfig);
myMSALObj.handleRedirectCallback(authRedirectCallBack);

function signIn() {
myMSALOb7j.loginPopup(requestObj).then(function (loginResponse) {
showlWelcomeMessage();
acquireTokenPopupAndCallFHIRServer();
}).catch(function (error) {
console.log(error);

b))

function showWelcomeMessage() {
var diviWelcome = document.getElementById('WelcomeMessage');

diviWelcome.innerHTML = "Welcome " + myMSALObj.getAccount().userName + " to FHIR Patient Browsing
App";
var loginbutton = document.getElementById('SignIn');
loginbutton.innerHTML = 'Sign Out';
loginbutton.setAttribute('onclick', 'signOut()"')
}
function signOut() {
myMSALObJ . logout();
}
function acquireTokenPopupAndCallFHIRServer() {
myMSALObj.acquireTokenSilent (requestObj).then(function (tokenResponse) {
callFHIRServer(FHIRConfig.FHIRendpoint + '/Patient', 'GET', null, tokenResponse.accessToken,
FHIRCallback);

}).catch(function (error) {
console.log(error);
if (requiresInteraction(error.errorCode)) {
myMSALObj .acquireTokenPopup(requestObj).then(function (tokenResponse) {
callFHIRServer(FHIRConfig.FHIRendpoint + '/Patient', 'GET', null,
tokenResponse.accessToken, FHIRCallback);
}).catch(function (error) {
console.log(error);

1

s

function callFHIRServer(theUrl, method, message, accessToken, callBack) {
var xmlHttp = new XMLHttpRequest();
xmlHttp.onreadystatechange = function () {
if (this.readyState == 4 && this.status == 200)
callBack(JSON.parse(this.responseText));
}
xmlHttp.open(method, theUrl, true);
xmlHttp.setRequestHeader("Content-Type", "application/json;charset=UTF-8");
xmlHttp.setRequestHeader('Authorization', 'Bearer ' + accessToken);
xmlHttp.send(message);

function FHIRCallback(data) {
patientListHtml = '";
data.entry.forEach(function(e) {
patientListHtml += '<1i>' + e.resource.name[@].family + ', ' + e.resource.name[@].given + '
(" + e.resource.id + ")"';

s
patientListHtml += '";
document.getElementById("patientTable").innerHTML = patientListHtml;

}
</script>
</body>

</html>

From here, you can go back to your web application resource and open the URL found on the Overview page.
Log in to see the patient James Tiberious Kirk that you previously created.

Next Steps

You have successfully deployed the Azure API for FHIR, registered a public client application, tested access, and
created a small web application. Check out the Azure API for FHIR supported features as a next step.

Supported Features

Access Azure API for FHIR with Postman

3/29/2021 + 4 minutes to read « Edit Online

A client application can access the Azure API for FHIR through a REST API. To send requests, view responses, and
debug your application as it is being built, use an API testing tool of your choice. In this tutorial, we'll walk you
through the steps of accessing the FHIR server using Postman.

Prerequisites

e AFHIR endpoint in Azure.

To deploy the Azure API for FHIR (a managed service), you can use the Azure portal, PowerShell, or Azure
CLI.

e Aregistered confidential client application to access the FHIR service.

e You have granted permissions to the confidential client application, for example, "FHIR Data Contributor”,
to access the FHIR service. For more information, see Configure Azure RBAC for FHIR.

e Postman installed.

For more information about Postman, see Get Started with Postman.

FHIR server and authentication details

To use Postman, the following authentication parameters are required:
e Your FHIR server URL, for example, https://MYACCOUNT.azurehealthcareapis.com

e The identity provider authority for your FHIR server, for example,

https://login.microsoftonline.com/{TENANT-ID}

The configured audience thatis usually the URL of the FHIR server, for example,

https://<FHIR-SERVER-NAME>.azurehealthcareapis.com OrF https://azurehealthcareapis.com .

The client_id or application ID of the confidential client application used for accessing the FHIR service.
e The client_secret or application secret of the confidential client application.

Finally, you should check that https://www.getpostman.com/oauth2/callback is a registered reply URL for your
client application.

Connect to FHIR server

Open Postman, and then select GET to make a request to https://fhir-server-url/metadata .

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/access-fhir-postman-tutorial.md
https://www.hl7.org/fhir/http.html
https://www.getpostman.com/
https://www.getpostman.com

@ Postman - o

File Edit Veew Help

My Workspace ~ & Invite

Mo Environment - «©
6ET hrps/ffhirdocsmsfrazurewebsi @+ o #

hittps:/ifhirdocsmsft.azurewebsites.net/metadata

GET v | hitps/ithirdocsmsft.azurewebsites.net/metadata “ Save

#® ncne farm-data ewevi-Form-urlencodad aw binary

u
:’:\
dl
| 1
o)

1] & Y team [iy

The metadata URL for Azure API for FHIR is https://MYACCOUNT.azurehealthcareapis.com/metadata .

In this example, the FHIR server URL is https://fhirdocsmsft.azurewebsites.net , and the capability statement of
the server is available at https://fhirdocsmsft.azurewebsites.net/metadata . This endpoint is accessible without

authentication.

If you attempt to access restricted resources, an "Authentication failed" response occurs.

@ Postman - o

File Edit Veew Help

s MyWorkspace » & Imvite

Mo Environment - «©
6ET hups/ifhirdocsmsft.azurewebsi @+ oo =

hittps:/ifhirdocsmsft.azurewebsites.net/Patlent

R m s

® none

raw binary

Pretty

dl
| 1
o)

thentication failed

1] & Y team [iy

Obtaining an access token

Select Get New Access Token.

To obtain a valid access token, select Authorization and select OAuth 2.0 from the TYPE drop-down menu.

@ Postman - a b

File Edit View Help

Mo Environment r o &
T hrpse/ifhirdocsmst.azurewebs 8 4 see
hittps:/ifhirdocsmsft.azurewebsites. net/Patlent
GET - httpssMhirdocsmsft.azurewebsites.net/Patient Send - Save ~

T Cookies Code

s up! These parameters hald senstive data. To keep this data sscure while warking In 2 collaborative environment, we recommend using variables. Learm mare %
ariabie:

Access Token

#wailable Tokens =

Add authorization data to

Request Headers -
Body Headers (8) Result Status. 401 Unauthorized Time: 354 ms Size: 5418 Download
Pretty JSON w = [*}
ik
2 “resourcelype”: “OperationOutcome”,
3 "1d™: "f4361e57-5fc2-4f84-52c4-ddScabb3Bash”,
4 “lssue": [
=L {
6
10 1
1n }
0ns & Qeam By ®

Select Get New Access Token.

@ Postman — =] b
File Ecit View Help

Token Name FHIRDOCSMSFT

Grant Type Authorization Code

Callback URL @ hitps:/fwaw. getpostman.comioauth?/callback

Auth URL @ hitps://login.micrasoftonline.com/TENANT-ID/oauth2/sutharize
Access Token URL @) https://login.micrasoftonline.com/ TENANT-ID/oauth2 token
Client ID @ HOE-X X000

Cliant Secrat @ XYTTURIXYYY

Scope @ openid profile

State @ 1234

Client Authentication Send client credentials in body

In the Get New Access Token dialog box, enter the following details:
FIELD EXAMPLE VALUE COMMENT
Token Name MYTOKEN A name you choose

Grant Type Authorization Code

FIELD EXAMPLE VALUE COMMENT

Callback URL https://www.getpostman.com/oauth2/callback

Auth URL https://login.microsoftonline.com/{TEl audience is

S - .
e R https://MYACCOUNT.azurehealthcareapis.com

for Azure API for FHIR

Access Token URL https://login.microsoftonline.com/{TENANT
ID}/oauth2/token
Client ID XXXXXXXX - XXX = XXXX - XXXX - Application ID
XXXXXXXXXXXX
Client Secret XXXXXXXX Secret client key
Scope <Leave Blank> Scope is not used; therefore, it can be
left blank.
State 1234 State is an opaque value to prevent

cross-site request forgery. It is optional
and can take an arbitrary value such as
1234

Client Authentication Send client credentials in body

Select Request Token to be guided through the Azure Active Directory Authentication flow, and a token will be
returned to Postman. If an authentication failure occurs, refer to the Postman Console for more details. Note: On
the ribbon, select View, and then select Show Postman Console. The keyboard shortcut to the Postman
Consoleis Alt-Ctrl+C.

Scroll down to view the returned token screen, and then select Use Token.

@ Postman - =] *
File Edit View Help

KOG dGxvb2euY 25t iwiaWRwjoibGI 2255 b2 0L Cpc GRRZHIIDik
ALL TOKENS MZEUMTASLIEZMCASNIISImShEWLIO|bGES1 ZHIUZNKQGS dGob

25UY2SNERRDANIDISIMEPZ OB GIMDBRMDCILWLSYTC
V2-AAD ZDI3LTASYTAXOTHhMIE ZCsInN1 YilGlkgOZkpxZ FZON

UNWIM M EZ0HFMPZveENSaWRVAzI1 NEXsNmALCI0awgIoiy
AADLFHIRTEST Q3MWE T NS04MNZZHLTQSMDAIO DY ZNCOZYZiNZUZMTAXYIMILCY

blxdwWhfbmFL2SI6imxpdmUuY 29t 2Nsb3vkeWsicmRADSVIbGSY
ayS{b20ILC] dGKIDIMAMSSAZISZRZr dWdiRTZIV]ZrQUFBIwidmivyl]

SBrbQESOTEMIL0OMXIPVYUWdNyzC
KYgjsRREBwWASABpADmTCEXQAgvIke
wir_BnchvtsSE) wEndoqQZkrLekSTH_RQMZTrXDhCYOw
qaPyFQIEmMO4TIESVILIfLyxhy-
a80j7uOTKP AADQE6AnUI_sDpSHwCuACRHDBYiwMDEQsaUTRN
ErROSFEETUEde0kDT-
MZCSche_d1_WEIHEMBOUVNEHWET JUaDSWITZZywd850HIUE
EmC iAmhhRIztgIU_f_izbACUISTHCQ

Refer to the Access Token field to view the newly populated token. If you select Send to repeat the patient

https://learning.postman.com/docs/sending-requests/authorization/

resource search, a Status 2ee ok gets returned. A returned status 2ee ok indicates a successful HTTP request.

D Postman

File Edit Veew Help

s MyWorkspace » & Imvite

Mo Environment - «©
SET hrrps/ffhirdocsmsfuamurewebsis @ 4 oo =

hittps:/ifhirdocsmsft.azurewebsites.net/Patlent

GET v | hitps/ithirdocsms

Preview Request

a

4
J
L]

irdocsmsft.azurewsboites. net/Patisnt”

QB 0 team B

In the Patient search example, there are no patients in the database such that the search result is empty.

You can inspect the access token using a tool like jwtms. An example of the content is shown below.

{
"aud": "https://MYACCOUNT.azurehealthcareapis.com",
"iss": "https://sts.windows.net/{TENANT-ID}/",
"iat": 1545343803,
"nbf": 1545343803,
"exp": 1545347703,
"acr": "1",
"aio": "AUQAuU/8IXXXXXXXXXdQxcxnleis459j70Kf9DwcUj1KY3I2G/9a0nSbw==",
"amr": [

"pwd"

1,
"appid": "XXXXXXXX=XXXX = XXXX = XXXX = XXXXXXXXXXXX"
"oid": "XXXXXXXX = XXXX = XXXX = XXXX = XXXXXXXXXXXX"
"appidacr": "1",
...// Truncated

}

In troubleshooting situations, validating that you have the correct audience (aud claim) is a good place to start.
If your token is from the correct issuer (iss claim) and has the correct audience (aud claim), but you are still
unable to access the FHIR AP, it is likely that the user or service principal (oid claim) doesn't have access to the
FHIR data plane. We recommend you use Azure role-based access control (Azure RBAC) to assign data plane
roles to users. If you're using an external, secondary Azure Active directory tenant for your data plane, you'll
need to Configure local RBAC for FHIR assignments.

It's also possible to get a token for the Azure API for FHIR using the Azure CLI. If you're using a token obtained
with the Azure CLI, you should use Authorization type Bearer Token. Paste the token in directly.

Inserting a patient

https://jwt.ms

With a valid access token, you can now insert a new patient. In Postman, change the method by selecting Post,

and then add the following JSON document in the body of the request.

{
"resourceType": "Patient",
"active": true,
"name": [
{
"use": "official",
"family": "Kirk",
"given": [
"James",
"Tiberious"
1
})
{
"use": "usual",
"given": [
"Jim"
1
}
1,
"gender": "male",
"birthDate": "1960-12-25"
}

Select Send to determine that the patient is successfully created.

& Fostman
File Edit Veew Help

2% MyWorkspace v &, Imvite

hittps:/rfhirdocsmsft.azurewebsites.net/Patlent

POST v | hitpsiifhirdocsmsfi.azurewebsites.net/Patient

nane form-data wevow-form-urlencoded @ raw binary t -

Mo Environment - ©
“ s
E e
| e}

Y Leam T B

If you repeat the patient search, you should now see the patient record.

@ Postman - o

File Edit Veew Help

8 MyWorkspace + & Invite

Mo Environment - «©
SET hrrps/ffhirdocsmsfuamurewebsis @ 4 oo =

hittps:/ifhirdocsmsft.azurewebsites.net/Patlent

ft.arurewebsites.net/Patient m Save -

GET » | hitpsinthirdocsr
[]
® none form-data wwwaw-Form-urlencoded aw binary
Body 9 Stale 700 0K T 2Tms Size | Down
Prety - 5 mQ
=K

bb- 490 708556357,

:32:23,495+09:00"

self",
/fhirdocsmsft.azurewebsites.net/Patient™

tes.net/Patien

fullurl™: “https://fhirdocsmsft. azi

scaskdn”,

] Q@ E Y Leam]

Next steps

In this tutorial, you've accessed the Azure API for FHIR using Postman. For more information about the Azure API
for FHIR features, see

Supported features

Tutorial: Azure Active Directory SMART on FHIR

proxy

3/11/2021 « 5 minutes to read » Edit Online

SMART on FHIR is a set of open specifications to integrate partner applications with FHIR servers and electronic
medical records systems that have FHIR interfaces. One of the main purposes of the specifications is to describe
how an application should discover authentication endpoints for an FHIR server and start an authentication
sequence.

Authentication is based on OAuth2. But because SMART on FHIR uses parameter naming conventions that are
not immediately compatible with Azure Active Directory (Azure AD), the Azure API for FHIR has a built-in Azure
AD SMART on FHIR proxy that enables a subset of the SMART on FHIR launch sequences. Specifically, the proxy
enables the EHR launch sequence.

This tutorial describes how to use the proxy to enable SMART on FHIR applications with the Azure API for FHIR.

Prerequisites

e An instance of the Azure API for FHIR
e NET Core2.2

Configure Azure AD registrations

SMART on FHIR requires that Audience has an identifier URI equal to the URI of the FHIR service. The standard

configuration of the Azure API for FHIR uses an Audience value of https://azurehealthcareapis.com . However,

you can also set a value matching the specific URL of your FHIR service (for example
https://MYFHIRAPI.azurehealthcareapis.com). This is required when working with the SMART on FHIR proxy.

You will also need a client application registration. Most SMART on FHIR applications are single-page JavaScript

applications. So you should follow the instructions for configuring a public Azure AD client application.
After you complete these steps, you should have:

e A FHIR server with rge audience set to https://MYFHIRAPI.azurehealthcareapis.com , where MYFHIRAPI is the
name of your Azure API for FHIR instance.

e A public client application registration. Make a note of the application ID for this client application.

Enable the SMART on FHIR proxy

Enable the SMART on FHIR proxy in the Authentication settings for your Azure API for FHIR instance by
selecting the SMART on FHIR proxy check box:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/use-smart-on-fhir-proxy.md
https://docs.smarthealthit.org/
https://hl7.org/fhir/smart-app-launch/#ehr-launch-sequence
https://dotnet.microsoft.com/download/dotnet-core/2.2

3> smarttest - Authentication X

Azure API for FHIR

O Search (Ctrl+/) « F‘ save X Discard O Refresh
@ Overview View and configure authentication settings; specify Azure AD object ID (Users or Apps) that should be allowed
B Activity | to access this Azure API for FHIR.
ctivity log

Authority must be registered to Azure AD and in the following format: https://{Azure-AD-endpoint}/{tenant-id}.

Example: https://login.microsoftonline.com/contoso.onmicrosoft.com. Audience must be a URI or GUID secured

’ Tags by Azure AD. Please refer to https://docs.microsoft.com/azure/healthcare-apis/register-resource-azure-ad-
client-app for details.

n.‘ Access control (IAM)

Settings * Authority | https://login.microsoftonline.com/TENANT-ID \/|
> Authentication * Audience || https://MYFHIRAPI.azurehealthcareapis.com \/||
) CORS)

* Allowed object IDs @ abababab-abab-abab-abab-abababababab v
ﬂ Locks

Support + troubleshooting

Q New support request

SMART on FHIR proxy @

Enable CORS

Because most SMART on FHIR applications are single-page JavaScript apps, you need to enable cross-origin
resource sharing (CORS) for the Azure API for FHIR:

% smarttest - CORS X

Azure API for FHIR

«
O Search (Ctrl+/) O Refresh

@ Overview

to access a resource with a different domain (a cross-domain request). Without features like CORS, websites are
restricted to accessing resources from the same origin through what is known as same-origin policy. Please refer
to https://docs.microsoft.com/azure/healthcare-apis/configure-cross-origin-resource-sharing for details on how

=] Activity log

]
2mM Access control (IAM
i (1AM to configure CORS.

’ Tags Origins @ * v

Settings

» Authentication

n Locks Headers @ *

Support + troubleshooting

Q New support request
Methods @ 6 selected v
Max age @ 600

Allow credentials @

Configure the reply URL

The SMART on FHIR proxy acts as an intermediary between the SMART on FHIR app and Azure AD. The
authentication reply (the authentication code) must go to the SMART on FHIR proxy instead of the app itself. The
proxy then forwards the reply to the app.

Because of this two-step relay of the authentication code, you need to set the reply URL (callback) for your Azure
AD client application to a URL that is a combination of the reply URL for the SMART on FHIR proxy and the reply
URL for the SMART on FHIR app. The combined reply URL takes this form:

https://MYFHIRAPI.azurehealthcareapis.com/AadSmartOnFhirProxy/callback/aHROcHM6LY9sb2NhbGhvc3Q6NTAWMS9ZzYW1lwb
GVhcHAval5kZXguaHRtbA

In that reply, aHRecHM6LY9sb2NhbGhvc3QENTAWMS9ZYW1wbGVhcHAvaWskzXguaHRtbA is @ URL-safe, base64-encoded
version of the reply URL for the SMART on FHIR app. For the SMART on FHIR app launcher, when the app is
running locally, the reply URL is https://localhost:5001/sampleapp/index.html .

You can generate the combined reply URL by using a script like this:

$replyUrl = "https://localhost:5001/sampleapp/index.html"
$fhirServerUrl = "https://MYFHIRAPI.azurewebsites.net"
$bytes = [System.Text.Encoding]::UTF8.GetBytes($ReplyUrl)
$encodedText = [Convert]::ToBase64String($bytes)
$encodedText = $encodedText.TrimEnd('=");

$encodedText = $encodedText.Replace('/',"'_");
$encodedText = $encodedText.Replace('+','-");

$newReplyUrl = $FhirServerUrl.TrimEnd('/"') + "/AadSmartOnFhirProxy/callback/" + $encodedText

Add the reply URL to the public client application that you created earlier for Azure AD:

H save X Discard W Got feedback?
Redirect URIs

The URIs that we will accept as destinations when returning authentication responses (tokens) after successfully authenticating users. Also referred to as reply URLs.
Learn more about adding support for web, mobile and desktop clients [/

TYPE REDIRECT URI

Public client (mobile & desktop) https://www.getpostman.com/oauth2/callback jin]
Public client (mobile & desktop) v https://MYFHIRAPI.azurehealthcareapis.com/AadSmartOnFhirProxy/callback/aHROCHM6Ly9... ||
Web v e.g. https://myapp.com/auth

Get a test patient

To test the Azure API for FHIR and the SMART on FHIR proxy, you'll need to have at least one patient in the
database. If you have not interacted with the APl yet and you don't have data in the database, follow the FHIR

API Postman tutorial to load a patient. Make a note of the ID of a specific patient.

Download the SMART on FHIR app launcher

The open-source FHIR Server for Azure repository includes a simple SMART on FHIR app launcher and a sample
SMART on FHIR app. In this tutorial, use this SMART on FHIR launcher locally to test the setup.

You can clone the GitHub repository and go to the application by using these commands:

git clone https://github.com/Microsoft/fhir-server
cd fhir-server/samples/apps/SmartLauncher

The application needs a few configuration settings, which you can setin appsettings.json :

https://github.com/Microsoft/fhir-server

"FhirServerUrl": "https://MYFHIRAPI.azurehealthcareapis.com",
"ClientId": "APP-ID",
"DefaultSmartAppUrl": "/sampleapp/launch.html"

We recommend that you use the dotnet user-secrets feature:

dotnet user-secrets set FhirServerUrl https://MYFHIRAPI.azurehealthcareapis.com
dotnet user-secrets set ClientId <APP-ID>

Use this command to run the application:

dotnet run

Test the SMART on FHIR proxy

After you start the SMART on FHIR app launcher, you can point your browser to https://localhost:5ee1 , where
you should see the following screen:

Microsoft FHIR Server SMART on FHIR App Launcher

Launch parameters

Patient:

552dfc56-9a96-4717-8a74-36bce46dd54f

Encounter:
Practitioner:

Appliction URL:

/sampleapp/launch.html

FHIR Server URL:

https://smarttest-test.mshapis.com

Launch context

{
"patient": "552dfc56-9a96-4717-8a74-36bce46dd541"

}

Launch URL

/sampleapp/launch.html?launch=eyJwYXRpZW50ljoiNTUyZGZNTYtOWESNiIOONZE3LThhNzQtMzZiY2UONmMRKNTF

When you enter Patient, Encounter, or Practitioner information, you'll notice that the Launch context is
updated. When you're using the Azure API for FHIR, the launch context is simply a JSON document that contains
information about patient, practitioner, and more. This launch context is base64 encoded and passed to the
SMART on FHIR app as the 1aunch query parameter. According to the SMART on FHIR specification, this
variable is opaque to the SMART on FHIR app and passed on to the identity provider.

The SMART on FHIR proxy uses this information to populate fields in the token response. The SMART on FHIR
app can use these fields to control which patient it requests data for and how it renders the application on the
screen. The SMART on FHIR proxy supports the following fields:

® patient

® encounter

® practitioner

® need_patient_banner

® smart_style url

These fields are meant to provide guidance to the app, but they don't convey any security information. A SMART
on FHIR application can ignore them.

Notice that the SMART on FHIR app launcher updates the Launch URL information at the bottom of the page.
Select Launch to start the sample app, and you should see something like this sample:

Microsoft FHIR Server SMART on FHIR Sample App

Patient Resource
{

"resourceType": "Patient”,
"id": "5652dfc56-9a96-4717-8a74-36bce46dd54f",
"meta": {
"versionld": "1",
"lastUpdated": "2019-04-02T11:44:24.9103823+00:00"
}

ctive": true,
"name": [

Token Response
{

"token_type": "Bearer”,
"scope": "user_impersonation",
"expires_in": "3599",
"ext_expires_in": "3599",
"expires_on": "1554209735",
"not_before": "1554205835",
"resource"™:

"pwd_exp": "714132",

Inspect the token response to see how the launch context fields are passed on to the app.

Next steps

In this tutorial, you've configured the Azure Active Directory SMART on FHIR proxy. To explore the use of SMART
on FHIR applications with the Azure API for FHIR and the open-source FHIR Server for Azure, go to the
repository of FHIR server samples on GitHub:

FHIR server samples

https://github.com/Microsoft/fhir-server-samples

Tutorial: Receive device data through Azure I0T

Hub

4/21/2021 « 5 minutes to read = Edit Online

Azure IoT Connector for Fast Healthcare Interoperability Resources (FHIR®))* provides you the capability to
ingest data from Internet of Medical Things (IoMT) devices into Azure API for FHIR. The Deploy Azure loT
Connector for FHIR (preview) using Azure portal quickstart showed an example of device managed by Azure loT
Central sending telemetry to Azure loT Connector for FHIR. Azure loT Connector for FHIR can also work with
devices provisioned and managed through Azure loT Hub. This tutorial provides the procedure to connect and
route device data from Azure loT Hub to Azure IoT Connector for FHIR.

Prerequisites

e An active Azure subscription - Create one for free

e Azure API for FHIR resource with at least one Azure loT Connector for FHIR - Deploy Azure loT Connector for
FHIR (preview) using Azure portal

e Azure loT Hub resource connected with real or simulated device(s) - Create an loT hub using the Azure portal

TIP

If you are using an Azure loT Hub simulated device application, feel free to pick the application of your choice amongst
different supported languages and systems.

Get connection string for Azure 10T Connector for FHIR (preview)

Azure loT Hub requires a connection string to securely connect with your Azure loT Connector for FHIR. Create a
new connection string for your Azure loT Connector for FHIR as described in Generate a connection string.
Preserve this connection string to be used in the next step.

Azure loT Connector for FHIR uses an Azure Event Hub instance under the hood to receive device messages. The
connection string created above is basically the connection string to this underlying Event Hub.

Connect Azure IoT Hub with the Azure loT Connector for FHIR
(preview)
Azure loT Hub supports a feature called message routing that provides capability to send device data to various

Azure services like Event Hub, Storage Account, and Service Bus. Azure loT Connector for FHIR leverages this
feature to connect and send device data from Azure loT Hub to its Event Hub endpoint.

NOTE

At this time you can only use PowerShell or CLI command to create message routing because Azure loT Connector for
FHIR's Event Hub is not hosted on the customer subscription, hence it won't be visible to you through the Azure portal.
Though, once the message route objects are added using PowerShell or CLI, they are visible on the Azure portal and can
be managed from there.

Setting up a message routing consists of two steps.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/device-data-through-iot-hub.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/azure/iot-hub/quickstart-send-telemetry-dotnet
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-routing

Add an endpoint

This step defines an endpoint to which the loT Hub would route the data. Create this endpoint using either Add-

AzlotHubRoutingEndpoint PowerShell command or az iot hub routing-endpoint create CLI command, based on

your preference.

Here is the list of parameters to use with the command to create an endpoint:

POWERSHELL PARAMETER

ResourceGroupName

Name

EndpointName

EndpointType

EndpointResourceGroup

EndpointSubscriptionid

ConnectionString

Add a message route

CLI PARAMETER

resource-group

hub-name

endpoint-name

endpoint-type

endpoint-resource-group

endpoint-subscription-id

connection-string

DESCRIPTION

Resource group name of your loT Hub
resource.

Name of your loT Hub resource.

Use a name that you would like to
assign to the endpoint being created.

Type of endpoint that loT Hub needs
to connect with. Use literal value of
"EventHub" for PowerShell and
"eventhub" for CLI.

Resource group name for your Azure
loT Connector for FHIR's Azure API for
FHIR resource. You can get this value
from the Overview page of Azure API
for FHIR.

Subscription Id for your Azure loT
Connector for FHIR's Azure API for
FHIR resource. You can get this value
from the Overview page of Azure API
for FHIR.

Connection string to your Azure loT
Connector for FHIR. Use the value you
obtained in the previous step.

This step defines a message route using the endpoint created above. Create a route using either Add-

AzlotHubRoute PowerShell command or az iot hub route create CLI command, based on your preference.

Here is the list of parameters to use with the command to add a message route:

POWERSHELL PARAMETER

ResourceGroupName

Name

EndpointName

RouteName

CLI PARAMETER

hub-name

endpoint-name

route-name

DESCRIPTION

Resource group name of your loT Hub
resource.

Name of your loT Hub resource.

Name of the endpoint you have
created above.

A name you want to assign to
message route being created.

https://docs.microsoft.com/en-us/powershell/module/az.iothub/add-aziothubroutingendpoint
https://docs.microsoft.com/en-us/cli/azure/iot/hub/routing-endpoint#az_iot_hub_routing_endpoint_create
https://docs.microsoft.com/en-us/powershell/module/az.iothub/add-aziothubroute
https://docs.microsoft.com/en-us/cli/azure/iot/hub/route#az_iot_hub_route_create

POWERSHELL PARAMETER CLI PARAMETER DESCRIPTION

Source source-type Type of data to send to the endpoint.
Use literal value of "DeviceMessages
for PowerShell and "devicemessages”
for CLI.

Send device message to loT Hub

Use your device (real or simulated) to send the sample heart rate message shown below to Azure loT Hub. This
message will get routed to Azure loT Connector for FHIR, where the message will be transformed into a FHIR

Observation resource and stored into the Azure API for FHIR.

"HeartRate": 890,
"RespiratoryRate": 12,
"HeartRateVariability": 64,
"BodyTemperature": 99.08839032397609,
"BloodPressure": {

"Systolic": 23,

"Diastolic": 34
s
"Activity": "walking"

IMPORTANT
Make sure to send the device message that conforms to the mapping templates configured with your Azure loT

Connector for FHIR.

View device data in Azure API for FHIR

You can view the FHIR Observation resource(s) created by Azure loT Connector for FHIR on Azure API for FHIR
using Postman. Set up your Postman to access Azure API for FHIR and make a GeT request to
https://your-fhir-server-url/Observation?code=http://loinc.org|8867-4 to view Observation FHIR resources

with heart rate value submitted in the above sample message.

TIP
Ensure that your user has appropriate access to Azure API for FHIR data plane. Use Azure role-based access control

(Azure RBAC) to assign required data plane roles.

Next steps

In this quickstart guide, you set up Azure loT Hub to route device data to Azure loT Connector for FHIR. Select
from below next steps to learn more about Azure loT Connector for FHIR:

Understand different stages of data flow within Azure loT Connector for FHIR.
Azure loT Connector for FHIR data flow
Learn how to configure loT Connector using device and FHIR mapping templates.

Azure loT Connector for FHIR mapping templates

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Centers for Medicare and Medicaid Services (CMS)

Interoperability and Patient Access rule introduction

6/8/2021 * 4 minutes to read = Edit Online

In this series of tutorials, we'll cover a high-level summary of the Center for Medicare and Medicaid Services
(CMS) Interoperability and Patient Access rule, and the technical requirements outlined in this rule. We'll walk
through the various implementation guides referenced for this rule. We'll also provide details on how to
configure the Azure API for FHIR to support these implementation guides.

Rule overview

The CMS released the Interoperability and Patient Access rule on May 1, 2020. This rule requires free and secure
data flow between all parties involved in patient care (patients, providers, and payers) to allow patients to access
their health information when they need it. Interoperability has plagued the healthcare industry for decades,
resulting in siloed data that causes negative health outcomes with higher and unpredictable costs for care. CMS
is using their authority to regulate Medicare Advantage (MA), Medicaid, Children's Health Insurance Program
(CHIP), and Qualified Health Plan (QHP) issuers on the Federally Facilitated Exchanges (FFEs) to enforce this rule.

In August 2020, CMS detailed how organizations can meet the mandate. To ensure that data can be exchanged
securely and in a standardized manner, CMS identified FHIR version release 4 (R4) as the foundational standard
required for the data exchange.

There are three main pieces to the Interoperability and Patient Access ruling:

e Patient Access API (Required July 1, 2021) — CMS-regulated payers (as defined above) are required
to implement and maintain a secure, standards-based API that allows patients to easily access their
claims and encounter information, including cost, as well as a defined subset of their clinical information
through third-party applications of their choice.

e Provider Directory APl (Required July 1, 2021) — CMS-regulated payers are required by this
portion of the rule to make provider directory information publicly available via a standards-based API.
Through making this information available, third-party application developers will be able to create
services that help patients find providers for specific care needs and clinicians find other providers for
care coordination.

e Payer-to-Payer Data Exchange (Required January 1, 2022) — CMS-regulated payers are required
to exchange certain patient clinical data at the patient’s request with other payers. While there's no
requirement to follow any kind of standard, applying FHIR to exchange this data is encouraged.

Key FHIR concepts

As mentioned above, FHIR R4 is required to meet this mandate. In addition, there have been several
implementation guides developed that provide guidance for the rule. Implementation guides provide extra
context on top of the base FHIR specification. This includes defining additional search parameters, profiles,
extensions, operations, value sets, and code systems.

The Azure API for FHIR has the following capabilities to help you configure your database for the various
implementation guides:

e Support for RESTful interactions

e Storing and validating profiles

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/cms-tutorial-introduction.md
https://www.cms.gov/Regulations-and-Guidance/Guidance/Interoperability/index
https://www.hl7.org/fhir/implementationguide.html

e Defining and indexing custom search parameters

e (Converting data

Patient Access API Implementation Guides

The Patient Access API describes adherence to four FHIR implementation guides:

e CARIN IG for Blue Button(®): Payers are required to make patients' claims and encounters data available
according to the CARIN IG for Blue Button Implementation Guide (C4BB IG). The C4BB IG provides a set of
resources that payers can display to consumers via a FHIR APl and includes the details required for claims
data in the Interoperability and Patient Access API. This implementation guide uses the
ExplanationOfBenefit (EOB) Resource as the main resource, pulling in other resources as they are
referenced.

e HL7 FHIR Da Vinci PDex |IG: The Payer Data Exchange Implementation Guide (PDex IG) is focused on
ensuring that payers provide all relevant patient clinical data to meet the requirements for the Patient
Access API. This uses the US Core profiles on R4 Resources and includes (at a minimum) encounters,
providers, organizations, locations, dates of service, diagnoses, procedures, and observations. While this
data may be available in FHIR format, it may also come from other systems in the format of claims data,
HL7 V2 messages, and C-CDA documents.

e HL7 US Core IG: The HL7 US Core Implementation Guide (US Core IG) is the backbone for the PDex IG
described above. While the PDex IG limits some resources even further than the US Core IG, many
resources just follow the standards in the US Core IG.

e HL7 FHIR Da Vinci - PDex US Drug Formulary IG: Part D Medicare Advantage plans have to make
formulary information available via the Patient API. They do this using the PDex US Drug Formulary
Implementation Guide (USDF IG). The USDF IG defines a FHIR interface to a health insurer’s drug
formulary information, which is a list of brand-name and generic prescription drugs that a health insurer
agrees to pay for. The main use case of this is so that patients can understand if there are alternative drug

available to one that has been prescribed to them and to compare drug costs.

Provider Directory APl Implementation Guide

The Provider Directory APl describes adherence to one implementation guide:

e HL7 Da Vinci PDex Plan Network IG: This implementation guide defines a FHIR interface to a health insurer’s
insurance plans, their associated networks, and the organizations and providers that participate in these

networks.

Touchstone

To test adherence to the various implementation guides, Touchstone is a great resource. Throughout the
upcoming tutorials, we'll focus on ensuring that the Azure API for FHIR is configured to successfully pass various
Touchstone tests. The Touchstone site has a lot of great documentation to help you get up and running.

Next steps

Now that you have a basic understanding of the Interoperability and Patient Access rule, implementation guides,
and available testing tool (Touchstone), we'll walk through setting up the Azure API for FHIR for the CARIN IG for
Blue Button.

CARIN Implementation Guide for Blue Button

http://hl7.org/fhir/us/carin-bb/STU1/index.html
http://hl7.org/fhir/us/davinci-pdex/STU1/index.html
https://www.hl7.org/fhir/us/core/toc.html
http://hl7.org/fhir/us/Davinci-drug-formulary/index.html
http://build.fhir.org/ig/HL7/davinci-pdex-plan-net/
https://touchstone.aegis.net/touchstone/

CARIN Implementation Guide for Blue Button®

6/8/2021 « 2 minutes to read » Edit Online

In this tutorial, we'll walk through setting up the Azure API for FHIR to pass the Touchstone tests for the CARIN
Implementation Guide for Blue Button (C4BB IG).

Touchstone capability statement

The first test that we'll focus on is testing the Azure API for FHIR against the C4BB IG capability statement. If you
run this test against the Azure API for FHIR without any updates, the test will fail due to missing search
parameters and missing profiles.

Define search parameters

As part of the C4BB IG, you'll need to define three new search parameters for the ExplanationofBenefit
resource. Two of these are tested in the capability statement (type and service-date), and one is needed for

_include searches (insurer).

o type
® service-date

® insurer

NOTE

In the raw JSON for these search parameters, the name is set to ExplanationOfBenefit_<SearchParameter Name> . The

Touchstone test is expecting that the name for these will be type, service-date, and insurer.

The rest of the search parameters needed for the C4BB IG are defined by the base specification and are already
available in the Azure API for FHIR without any additional updates.

Store profiles

Outside of defining search parameters, the other update you need to make to pass this test is to load the
required profiles. There are eight profiles defined within the C4BB IG.

e (C4BB Coverage

e (C4BB ExplanationOfBenefit Inpatient Institutional

e (C4BB ExplanationOfBenefit Outpatient Institutional

e C4BB ExplanationOfBenefit Pharmacy

e (4BB ExplanationOfBenefit Professional NonClinician
e (C4BB Organization

e (C4BB Patient

e (C4BB Practitioner

Sample rest file

To assist with creation of these search parameters and profiles, we have a sample http file that includes all the
steps outlined above in a single file. Once you've uploaded all the necessary profiles and search parameters, you
can run the capability statement test in Touchstone.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/carin-implementation-guide-blue-button-tutorial.md
https://touchstone.aegis.net/touchstone/
https://build.fhir.org/ig/HL7/carin-bb/index.html
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/00-Capability&activeOnly=false&contentEntry=TEST_SCRIPTS
https://build.fhir.org/ig/HL7/carin-bb/SearchParameter-explanationofbenefit-type.json
https://build.fhir.org/ig/HL7/carin-bb/SearchParameter-explanationofbenefit-service-date.json
https://build.fhir.org/ig/HL7/carin-bb/SearchParameter-explanationofbenefit-insurer.json
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Coverage.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Inpatient-Institutional.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Outpatient-Institutional.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Pharmacy.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Professional-NonClinician.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Organization.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Patient.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Practitioner.html
https://github.com/microsoft/fhir-server/blob/main/docs/rest/C4BB/C4BB.http

Test Script Execution - /FHIRSandbox/CARIN/CARIN-4-BlueButton/00-Capability/carin-bb-00-Capability-json & To Test Execution

Exec Id: 202105241532366041338526 Description: Test a single server to verify support for the capabilities interaction ‘HTTP GET Interactions
Start Time: 05/24/2021 12:32-36PM metadata’ and the return of a valid GapabilityStatement resource SUppOrting the CARIN 100% passed Pass Fail Other Total
for BB IG Consumer Application Implementation Guide Version: 1.0.0 capabilities usin
End Time: 05/24/2021 12:32:57PM JSON sy PP ° P ° Summary NENN—_-—-,€ 1| 0 0 1
Status: S ynax. metadat: DENNNENEEN 1 0 0 1
: Test Setup: FHIRSandbox-CARIN-CARIN-4-BlueButton-00-Capability--All
Duration: 20.858s Executed By:
Version: 4 Organization:
Valldator: FHIR 4.0.1 Origin: TouchstoneFHIR
Destination:

Test Script: /FHIRSandbox/CARIN/CARIN-4-BlueButton/00-Capability/carin-bb-00-Capability-json

; . o S 0 ; ; 100%
tests passes failures skipped running waiting not started successful

Tests
TestName Description Status Duration
l:s‘ apiliy. | 7ot the HTTP GET metadata capabllities operation with HTTP Header Accept set to JSON format. The expected response content is a valid GapabilityStatement resource supporting the GARIN for BB IG .
Jsup" Y Implementation Guide Version: 1.0.0. Test is asking for JSON format which is required for implementation. .
Profiles
Id Source Contents
bilities-profile http://hi7.org/hi Definition/C: XML JSON

Touchstone read test

After testing the capabilities statement, we will test the read capabilities of the Azure API for FHIR against the
C4BB IG. This test is testing conformance against the eight profiles you loaded in the first test. You will need to
have resources loaded that conform to the profiles. The best path would be to test against resources that you
already have in your database, but we also have an http file available with sample resources pulled from the
examples in the IG that you can use to create the resources and test against.

Test Execution

Exec Id: 202105211811072957527663 Test Setup: FHIRSandbox-GARIN-GARIN-4-BlueButton-01-Read--All
Start Time: 05/21/2021 03:11:07PM Executed By:
End Time: 05/21/2021 03:11:35PM Organization:
Status: Origin: TouchstoneFHIR
Duration: 28.017s Destination:
Test Scripts: 8 Validator: FHIR 4.0.1
()
8 8 0 [} o 1 00 /° Hefvesh
tests passes failures skipped walting not started e
Test Script Execution Version Latest Description Origin Destination Status Start End Duration Passed Tests
JFHIRSandbox/CARIN/CARIN-4- 2 2 Read for a specific Coverage Resource. Read shall TouchstoneFHIR HLSCD PM - Caitlin May € 05/21/2021 05/21/2021 7.408s 1of 1
BlueButton/01-Read/carin-bb- be supported for this resource type. Tests for https://caitlinmay.azurewebsites.net 03:11:07PM 03:11:14PM
01-Read-Coverage ‘conformance to the CarindBB Coverage profile on a
returned response for Coverage
JFHIRSandbox/CARIN/GARIN-4- 1 1 Read for a specific ExplanationOfBenefit - Inpatient TouchstoneFHIR HLSCD PM - Caitlin May © 05/21/2021 05/21/2021 7363s 1of 1 [N
BlueButton/01-Read/carin-bb- Institutional Resource. Read shall be supported for https://caitlinmay.azurewebsites.net 03:11:14PM 03:11:22PM

01-Read-EOB-Inpatient this resource type. Tests for conformance to the
‘CarindBB ExplanationOfBenefit Inpatient Institutional
profile on a returned response for

ExplanationOfBenefit
JFHIRSandbox/CARIN/CARIN-4- 1 1 Read for a specific ExplanationOfBenefit - TouchstoneFHIR HLSCD PM - Caitlin May € 05/21/2021 05/21/2021 4.126s 1of 1
BlueButton/01-Read/carin-bb- NonClinical Resource. Read shall be supported for https://caitinmay.azurewebsites net 03:11:22PM 03:11:26PM
01-Read-EOB-NonClinical this resource type. Tests for conformance to the

Carin4BB ExplanationOfBenefit NonClinical profile on
areturned response for ExplanationOfBenefit

JFHIRSandbox/CARIN/GARIN-4- 1 1 Read for a specific ExplanationOfBenefit - Outpatient TouchstoneFHIR HLSCD PM - Caitiin May © [T 05/21/2021 05/21/2021 3.610s 1of 1 |
BlueButton/01-Read/carin-bb- Institutional Resource. Read shall be supported for https://caitlinmay.azurewebsites.net 03:11:26PM 03:11:30PM
01-Read-EOB-Outpatient this resource type. Tests for conformance to the

CarindBB ExplanationOfBenefit Outpatient
Institutional profile on a returned response for

ExplanationOfBenefit
JFHIRSandbox/CARIN/GARIN-4- 1 1 Read for a specific ExplanationOfBenefit - Pharmacy ~ TouchstoneFHIR HLSCD PM - Caitlin May € 05/21/2021 05/21/2021 21128 1of1 I
BlugButton/01-Read/carin-bb- Resource. Read shall be supported for this resource https://caitinmay.azurewebsites net 03:11:30PM 03:11:32PM
01-Read-EOB-Pharmacy type. Tests for conformance to the Carin4BB

ExplanationOfBenefit Pharmacy profile on a returned
response for ExplanationOfBenefit

JFHIRSandbox/CARIN/GARIN-4- 2 2 Read for a specific Organization Resource. Read TouchstoneFHIR HLSCD PM - Caitlin May (© [T 05/21/2021 05/21/2021 0826 1of 1 |
BlueButton/01-Read/carin-bb- shall be supported for this resource type. Tests for https://caitlinmay.azurewebsites.net 03:11:32PM 03:11:33PM
01-Read-Organization conformance to the CarindBB Organization profile on

a returned response for Organization
/FHIRSandbox/CARIN/CARIN-4- 2 2 Read for a specific Patient Resource. Read shallbe TouchstoneFHIR HLSCD PM - Caitiin May © [05/21/2021 05/21/2021 0896 1of 1 [N
BlueButton/01-Read/carin-bb- 'supported for this resource type. Tests for https://caitlinmay.azurewebsites.net 03:11:33PM 03:11:34PM
01-Read-Patient ‘conformance to the Carin4BB Patient profile on a

returned response for Patient
JFHIRSandbox/CARIN/GARIN-4- 1 1 Read for a specific Practitioner Resource. Read shall ~ TouchstoneFHIR HLSCD PM - Caitiin May © [T 05/21/2021 05/21/2021 1.081s 1of1
BlueButton/01-Read/carin-bb- be supported for this resource type. Tests for htps://caitlinmay.azurewebsites.net 03:11:34PM 03:11:35PM
01-Read-Practitioner conformance to the CarindBB Practitioner profile on

a returned response for Practitioner

Touchstone EOB query test

The next test we'll review is the EOB query test. If you've already completed the read test, you have all the data

https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/01-Read&activeOnly=false&contentEntry=TEST_SCRIPTS
https://github.com/microsoft/fhir-server/blob/main/docs/rest/C4BB/C4BB_Sample_Resources.http
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/02-EOBQuery&activeOnly=false&contentEntry=TEST_SCRIPTS

loaded that you'll need. This test validates that you can search for specific patient and

resources using various parameters.

Test Execution

Exec Id: 202105241621109619460553

Start Time: 05/24/2021 01:21:10PM
End Time: 05/24/2021 01:21:19PM
Statu:

Passed "

6 6 0 0 0 0
tests passes failures skipped running walting not started

Test Script Execution

/FHIRSandbox/CARIN/CARIN-4-
BlueButton/02-EOBQuery/carin-bb-02-
Query-EOB_lastUpdated

/FHIRSanabow/ CARIN/CARIN-4
BlueButton/02-EOBQuery/carin-bb-02-
Query-EOB_service-date

/FHIRSandbox/CARIN/CARIN-4-
BlueButton/02-EOBQuery/carin-bb-02-
Query-EOB_type

/FHIRSandbox/CARIN/CARIN-4-
BiueButton/02-EOBQuery/carin-bb-02-
Query-EOBDyldentifier

/FHIRSandbox/CARIN/CARIN-4~
BlueButton/02-EOBQuery/carin-bb-02-
Query-EOBbyPatient

/FHIRSaNGbOX/CARIN/CARIN-4-
BlueButton/02-EOBQuery/carin-bb-02-
Query-EOBbyld

Test Setup: F1

ARIN-CARIN-4
Executed By:
Organization:
Origin: TouchstoneFHIR
Destination:
Validator: FHIR 4.0.1

Version Latest Description

2

2

Tests for conformance to the GarindBB IG by querying an
EOB by _lastUpdated. Any EOB type (inpatient, Outpatient,
Pharmacy, er NonGlinieal) can be utllized in this test.

Tests for conformance to the GarindBB IG by querying an
EOB by senvice-date. Any EOB type (npatient, Outpatient,
Pharmacy, er NonGlinieal) can be utllized in this test.

Tests for conformance to the GarindBB IG by querying an
EOB by type. Any EOB type (Inpatient, Outpatient,
Pharmacy, or NenGlinical) can be utilized in this test.

Tests for conformance to the Garin4BB IG by querying an
EOB by Identifier. Any EOB type (Inpatient, Outpatient,
Pharmacy, or NonClinical) can be utilized in this test.

Tests for conformance to the CarindBB IG by querying an
EOB by Patient. Any EOB type (Inpatient, Outpatient,
Pharmacy, or NonClinical) can be utilized in this test.

Tests for conformance to the CarindBB IG by querying an
EOB by _id. Any EOB type (Inpatient, Outpatient, Pharmacy,
or NonClinical) can be utilized in this test.

Touchstone error handling test

EOBQuery--All

100%

successful

Origin Destination Status Start End Duration

TouchstoneFHIR HLSGD PM - Microsoit FHIR 05/24/2021 05/24/2021 2.303s
Server © hitps/caitlin- 01:21:11PM 01:21:13PM
touchstone.azurewebsites.net

TouchstoneFHIR HLSGD PM - Microsoft FHIR 05/24/2021 05/24/2021 0.969s
Server © hitps/caitiin- 01:21:13PM 01:21:14PM
touchstone.azurewebsites.net

TouchstoneFHIR HLSGD PM - Microsoft FHIR m 05/24/2021 05/24/2021 1.0668
Server © https:/caltiin- 01:21:14PM 01:21:15PM
touchstone.azurewebsites.net

TouchstoneFHIR HLSGD PM - Microsoft FHIR EEZE] osr24r2021 082472021 1.1558
Server © https:/caltiin- 01:21:15PM 01:21:16PM
touchstone.azurewebsites.net

TouchstoneFHIR HLSCD PM - Microsoft FHIR EEEE] oov2402021 0572472021 12448
Server © hitpsv/caltiin- 01:21:16PM 01:21:18PM
touchstone.azurewebsites.net

TouchstoneFHIR HLSCD PM - Microsoft FHIR =R 0512472021 05/24/2021 1.074s
Server © hittpsu/caltlin- 01:21:18PM 01:21:19PM

touchstone.azurewebsites.net

The final test we'll walk through is testing error handling. The only step you need to do is delete an

Passed

1of1

1of1

1ot

1ot

1ot

ExplanationOfBenefit

Tests.

ExplanationOfBenefit resource from your database and use the ID of the deleted ExplanationofBenefit resource

in the test.

Test Execution

Exec Id: 202105211914115453588480

Start Time: 06/21/2021 04:14:11PM
End Time: 05/21/2021 04:
Status:
Duration: 11.453s
Test Scripts: 3

:23PM

3 0 0 0 0
tests asses failures skipped running waliting not started

Test Script Execution

J/FHIRSandbox/CARIN/CARIN-4-
BlueButton/89-ErrorHandling/carin-bb-
99-DeletedResource

/FHIRSandbox/CARIN/CARIN-4-
BlueButton/99-ErrorHandling/carin-bb-
99-Invalid-Parameters

/FHIRSandbox/CARIN/CARIN-4-
BlueButton/99-ErrorHandling/carin-bb-
'99-UnknownResource

Next steps

Version Latest Description

2

2

Test Setup: FHIRSandbox-CARIN-CARIN-4-BlueButton-99-ErrorHandling--All

Executed By:
Organization:
Origin: TouchstoneFHIR
Destination:
Validator: FHIR 4.0.1

‘CARIN for BlueButton 99 Deleted Resource -
Test the deleted resource error by sending in a
read request for known deleted EOB resource
and expecting a 410 HTTP response.

‘CARIN for BlueButton 99 Invalid Parameters -
Test the invalid paramters error by sending in an
invalid search paramter and expecting a 400
HTTP response.

‘CARIN for BlueButton 99 Unknown Resource -
Test the unknown resource error by sending in a
query for an unknown EOB resource and
expecting a 404 HTTP response.

Origin

TouchstoneFHIR

TouchstoneFHIR

TouchstoneFHIR

100%

successful
Destination Status
HLSCD PM - Galtlin May '€
https://caitlinmay.azurewebsites.net
HLSGD PM - Caitlin May € Passed

hitps:/caitlinmay.azurewebsites.net

HLSCD PM - Caitlin May '€
https:/caitinmay.azurewebsites.net

Start End Duration
05/21/2021 05/21/2021 3.482s
04:14:11PM 04:14:15PM
05/21/2021 05/21/2021 3.370s
04:14:15PM 04:14:18PM
05/21/2021 05/21/2021 4.451s
04:14:18PM 04:14:22PM

Passed

1of1

1of1

1of1

Execute Again

Tests.

In this tutorial, we walked through how to pass the CARIN IG for Blue Button tests in Touchstone. Next, you can

review how to test the Da Vinci formulary tests.

DaVinci Drug Formulary

https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/99-ErrorHandling&activeOnly=false&contentEntry=TEST_SCRIPTS

Da Vinci Drug Formulary

6/8/2021 « 2 minutes to read » Edit Online

In this tutorial, we'll walk through setting up the Azure API for FHIR to pass the Touchstone tests for the Da Vinci
Payer Data Exchange US Drug Formulary Implementation Guide.

Touchstone capability statement

The first test that we'll focus on is testing the Azure API for FHIR against the Da Vinci Drug Formulary capability
statement. If you run this test without any updates, the test will fail due to missing search parameters and
missing profiles.

Define search parameters

As part of the Da Vinci Drug Formulary IG, you'll need to define three new search parameters for the
FormularyDrug resource. All three of these are tested in the capability statement.

e DrugTier
e DrugPlan

e DrugName

The rest of the search parameters needed for the Da Vinci Drug Formulary IG are defined by the base
specification and are already available in the Azure API for FHIR without any more updates.

Store profiles

Outside of defining search parameters, the only other update you need to make to pass this test is to load the
required profiles. There are two profiles used as part of the Da Vinci Drug Formulary IG.

e Formulary Drug

e Formulary Coverage Plan

Sample rest file

To assist with creation of these search parameters and profiles, we have the Da Vinci Formulary sample HTTP file
on the open-source site that includes all the steps outlined above in a single file. Once you've uploaded all the
necessary profiles and search parameters, you can run the capability statement test in Touchstone. You should

get a successful run:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/davinci-drug-formulary-tutorial.md
https://touchstone.aegis.net/touchstone/
http://hl7.org/fhir/us/Davinci-drug-formulary/
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/Formulary/00-Capability&activeOnly=false&contentEntry=TEST_SCRIPTS
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/SearchParameter-DrugTier.json.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/SearchParameter-DrugPlan.json.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/SearchParameter-DrugName.json.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/StructureDefinition-usdf-FormularyDrug.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/StructureDefinition-usdf-CoveragePlan.html
https://github.com/microsoft/fhir-server/blob/main/docs/rest/DaVinciFormulary/DaVinciFormulary.http

Test Script Execution - /FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/Formulary/00-Capability/dv-formulary-r4-00-capability-json € To Test Execution

Exec Id: 202106011341415742194125 Description: Da Vinci - Formulary - FHIR R4 - 00 Capability - test a single server to verify Interactions
Start Time: 06/01/2021 12:41:41PM support for the capabilities interaction 'HTTP GET metadata’ and the return of a 100% passed Pass Fail Other Total
e s L vaIK:F" e ;Ts:urce the required Da Vinci Formulary 1G Summary EEEEESSNN 1 0 0 1
SR passea | et e meladata EEEEEE 1 0 0 1
. Test Setup: FHIRSandbox--dv-formulary-r4-00-capability-json

Duration: 10.905s Executed By:

Version: 1
Validator: FHIR 4.0.1

Organization:
Origin: TouchstoneFHIR
Destination:

Test Script: /FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/Formulary/00-Capability/dy-
formulary-r4-00-capability-json

. 0 0 0

tests asse: failures running not started
0,

100%

successful
Tests
Test Name Description Status Duration
Test Test the HTTP GET metadata capabilities operation with HTTP Header Accept set to JSON format. The expected response content is a valid Capability Statement resource supporting the 29538
Capability required Da Vinci Formulary |G operations using JSON syntax =
ot Introspect the CapabilityStatement to assert the contents support the Da Vinci Formulary |G resources, operations, and required search parameters B3 5o
Requirements pe Ll L 0 P a s
Profiles
Id Source Contents

profile http:/ii7 org/ Definition/Capabi XML JSON

Touchstone query test

The second test is the query capabilities. This test validates that you can search for specific Coverage Plan and
Drug resources using various parameters. The best path would be to test against resources that you already
have in your database, but we also have the Da VinciFormulary_Sample_Resources HTTP file available with
sample resources pulled from the examples in the IG that you can use to create the resources and test against.

Test Execution

Exec Id: 202106011401313374804383 Test Setup: FHIRSandbox-DaVinci-FHIR4-0-1-Test-PDEX-Formulary-01-Query—tests
Start Time: 06/01/2021 01:01:31PM Executed By: \oira Dillon
End Time: 05/01/2021 01:01:54PM Organization: Moira Dillon
Status: w origin: TouchstoneFHIR
Duration: 231965 Destination: Moira Dillon - Moira - test 2 € hitps:/modillon-cosmos-fhir-2. azurewebsites.net
Test Scripts: 5 Validator: FHIR 4.0.1
0,
5 5 0 0 0 100%

tests sses failures skipped not started =]
Test Script Execution Version Latest Description Origin Destination Status Start End Duration Passed Tests
[FHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Search for All Coverage Plans. Validate TouchstoneFHIR Moira Dillon - Moira - test 2 W 06/01/2021 06/01/2021 8.633s 1or1 I
Test/PDEX/Formulary/01-Query/dv-pdex-r4-04-Formulary- the response against the PDex Coverage 5 https://madillon-cosmos- 01:01:31PM 01:01:40PM
01-Query-01-All-Plans-json Plan Profile Thir-2 azurewebsites.net
/FHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Search for Caverage Plan by Plan TouchstoneFHIR Moira Dillon - Moira - test 2 06/01/2021 06/01/2021 52375 10of1
TesUPDEX/Formulary/01-Query/dv-pdex-rd-04-Formulary- identifier and validate against the PDex © nitps://modillon-cosmos- 01:01:40PM 01:01:45PM
01-Query-02-All-In-Plan-json Coverage Plan Profile. fhir-2 azurewebsites net
/FHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Search for All Drugs in a Coverage Plan. TouchstoneFHIR Moira Dillon - Moira - test 2 06/01/2021 06/01/2021 2.843s 1or1 I
Test/PDEX/Formulary/01-Query/dv-pdex-r4-04-Formulary- Validate the response against the © https://modillon-cosmos- 01:01:45PM 01:01:48PM
01-Query-03-Generic-In-Plan-json Medication Knowledge profile. Thir-2 azurewebsites.net
IFHIRSaNAbox/DaVinCi/FHIR4-0-1- 1 1 Search for all Drugs within a Drug Tierin ~ TouchstoneFHIR Moira Dillon - Moira - test 2 06/01/2021 06/01/2021 27645 1of1 |
TesUPDEX/Formulary/01-Query/dv-pdex-r4-04-Formulary- a Coverage Plan and validate the C nitps://medillon-cosmos- 01:01:48PM 01:01:51PM
01-Query-04-CoveragePlan-and-Referenced-Drugs-json responses against their respective PDex fhir-2 azurewebsites.net

Profiles

IFHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Search for a particular Drug in a TouchstoneFHIR Moira Dillon - Moira - test 2 06/01/2021 06/01/2021 3190s 1of 1 [N
TestPDEX/Formulary/01-Query/dv-pdex-r4-04-Formulary- Coverage Plan and validae the C nitps://modillon-cosmos- 01:01:51PM 01:01:54PM
01-Query-05-Drug-By-RxNorm-And-Planld-json responses against their respective PDex fhir-2 azurewebsites.net

Formulary Profiles.

Next steps

In this tutorial, we walked through how to pass the Da Vinci Payer Data Exchange US Drug Formulary in
Touchstone. Next, you can learn how to test the Da Vinci PDex Implementation Guide in Touchstone.

Da Vinci PDex

https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/Formulary/01-Query&activeOnly=false&contentEntry=TEST_SCRIPTS
https://github.com/microsoft/fhir-server/blob/main/docs/rest/DaVinciFormulary/DaVinciFormulary_Sample_Resources.http

Da Vinci PDex

6/8/2021 « 2 minutes to read » Edit Online

In this tutorial, we'll walk through setting up the Azure API for FHIR to pass the Touchstone tests for the Da Vinci
Payer Data Exchange Implementation Guide (PDex IG).

NOTE

For all these tests, we'll run them against the JSON tests. The Azure API for FHIR supports both JSON and XML, but it
doesn't have separate endpoints to access JSSON or XML. Because of this, all the XML tests will fail. If you want to view the

capability statement in XML you simply pass the _format parameter: "GET {fhirurl}/metadata?_format=xml"

Touchstone capability statement

The first set of tests that we'll focus on is testing the Azure API for FHIR against the PDex IG capability statement.
This includes three tests:

Test Script Execution - /FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/00-Capabilitystatement/pdex-4-0-1-00-capability-json

The first test validates the basic capability statement against the IG requirements and will pass without
any updates.

The second test validates all the profiles have been added for US Core. This test will pass without updates
but will include a bunch of warnings. To have these warnings removed, you need to load the US Core
profiles. We've created a sample HTTP file that walks through creating all the profiles. You can also get the
profiles from the HL7 site directly, which will have the most current versions.

The third test validates that the $patient-everything operation is supported. Right now, this test will fail.
The operation will be available in mid-June 2021 in the Azure API for FHIR and is available now in the

open-source FHIR server on Cosmos DB. However, it is missing from the capability statement, so this test
will fail until we release a fix to bug 1989.

“ To Test Execution

Exec Id: 202106011740124518353949 Description: Da Vinci - PDex - FHIR R4-0-1 - Scenario 01 - Capability - test a single server to Interactions
Start Time: 06/01/2021 02:40:12PM verify support for the ion "HTTP GET ' and the return of 66% passed Pass Fail Other Total
a valid CapabilityStatement for the PDEX IG using JSON syntax.
End Time: 06/01/2021 02:40:39PM pabllty; 9 ¥ Summary EENNNNNEN 2 1 0 3
Status: Test Setup: FHIRSandbox--pdex-4-0-1-00-capability-json metadata I 2 1 0 3

Duration: 26.627s

Version: 1
Validator: FHIR 4.0.1

Executed By:

Organization:
Origin: TouchstoneFHIR

Destination:

Test Script: /FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/00-
Capabilif nent/pdex-4-0-1-00- lity-json

3 2 0 0 0 66%
tests passes skipped waiting not started P—

Tests
Test Name Description Status Duration
Test Test the HTTP GET metadata capabilities operation with HTTP Header Accept set to JSON format and no request URL defined. The p content is the M 5641
Capabilityl JSON found C; resource in JSON format. Ean e .
Test

Test the HTTP GET metadata capabilities operation with HTTP Header Accept set to JSON format and no request URL defined. The content is the
CapabilityMetadataJSON- P pel P q " [ZERl 14.432s
USCore found CapabilityStatement resource in JSON format that asserts support for the US Core profiles.
Test
C}E;pahmlyMe\adalaJSON— Test the HTTP GET metadata capabilities operation with HTTP Header Accept set to JSON format anfj no leqruasl URL defined. The fol content is the = 3.257s
Operations found CapabilityStatement resource in JSON format and asserting support for required PDEX operation, $patient-everything.

The

Touchstone $member-match test

second test in the Payer Data Exchange section tests the existence of the $member-match operation. You can

read more about the $§member-match operation in our $member-match operation overview.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/davinci-pdex-tutorial.md
https://touchstone.aegis.net/touchstone/
http://hl7.org/fhir/us/davinci-pdex/toc.html
https://github.com/microsoft/fhir-server/blob/main/docs/rest/PayerDataExchange/USCore.http
http://hl7.org/fhir/us/core/STU3.1.1/profiles.html#profiles
https://github.com/microsoft/fhir-server/issues/1989
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/01-Member-Match&activeOnly=false&contentEntry=TEST_SCRIPTS
http://hl7.org/fhir/us/davinci-hrex/2020Sep/OperationDefinition-member-match.html

In this test, you'll need to load some sample data for the test to pass. We have a rest file here with the patient
and coverage linked that you will need for the test. Once this data is loaded, you'll be able to successfully pass
this test. If the data is not loaded, you'll receive a 422 response due to not finding an exact match.

Test Scri pi Execution - /FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/01-Member-Match/01-Member-ld-Confirmation-json € To Test Execution
Exec Id: 202108011 Connectathon 25 - DaVinci HRex/CDex/PCDE - Clinical Data, Payer Coverage Interactions
Start Time: 06/01/2021 03:08:22PM Decision & Health Record Exchange - Use Case 01 - Member Id Confirmation 100% passed Pass Fail Other Total
End Time: 06/01/2021 03:08:32PM Test Setup: FHIRSandbox--01-Membet-ld-Confirmatien-json Summary HEEEEEEEE 1 O 0 1
Executed By: $match Patient NN 1 0 0 1
Status: :
Duration: 9.374s Organization:
Version: 1 Origin: TouchstoneFHIR
validator: FHIR 4.0.1 Deastinmtion:

Test Script: /FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/01-Member-
Match/01-Member-|d-Confirmation-json

1 » ” . ; ; 100%
tests passes failures skipped waiting not started successful

Tests

Test Name Description Status Duration

Test: 01-Member-ld-Confirmation-json Data Consumer Payer invokes the $member-match operation on the Data Source Payer 0.539s

Touchstone patient by reference

The next tests we'll review is the patient by reference tests. This set of tests validate that you can find a patient
based on various search criteria. The best way to test the patient by reference will be to test against your own
data, but we have uploaded a sample resource file that you can load to use as well.

Test Execution

Exec Id: 202106012023442467881762 Test Setup: FHIRSandbox-DaVinci-FHIR4-0-1-Test-PDEX-P: -0
Start Time: 06/01/2021 05:23:44PM Executed By:
End Time: 06/01/2021 05:24:20PM Organization:
Status: Origin: TouchstoneFHIR
Duration: 36.484s Destination:
Test Scripts: 3 Validator: FHIR 4.0.1
3 3 0 0 0 0 100% ==

tests passes tailures skipped running not started e
Test Script Execution Version Latest Description Origin Destination Status Start End Duration Passed Tests
/FHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Da Vinci - PDex - FHIR R4 - Patient Query - Search a TouchstoneFHIR HLSCD PM - Caitlin June © 06/01/2021 06/01/2021 10.301s 1of 1 N
Test/PDEX/PayerExchange/02- known Patient by the Health_Plan_Location_ID as. hittps azt ites.net 23 23
PatientByReference/dv-pdex-r4-01-patient- JSON formatted data.
Json
/FHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Da Vinci - PDex - FHIR R4 - Encounter Query - Search TouchstoneFHIR HLSCD PM - Caitlin June © 06/01/2021 06/01/2021 12.863s 1of 1 [N
Test/PDEX/PayerExchange/02- Encounters for a known Patient updated since a known https://caitlinjune.azurewebsites.net 05:23:54PM 05:24:07PM
PatientByReference/dv-pdex-r4-02- date and excluding my known location as JSON
encounter-json formatted data
/FHIRSandbox/DaVinci/FHIR4-0-1- 1 1 Da Vinci - PDex - FHIR R4 - Scenario 02 Payer TouchstoneFHIR HLSCD PM - Caitlin June © 06/01/2021 06/01/2021 13.148s 1of 1
Test/PDEX/PayerExchange/02- Exchange - Query - Search all Coverages for a known https://caitlinjune.azurewebsites.net 05:24:07PM 05:24:20PM
PatientByReference/dv-pdex-r4-03- Subseriber since a known date as JSON formatted
coverage-json data.

Touchstone patient/$everything test

The final test we'll walk through is testing patient-everything. For this test, you'll need to load a patient, and then
you'll use that patient’s ID to test that you can use the $everything operation to pull all data related to the
patient.

Next steps

In this tutorial, we walked through how to pass the Payer Exchange tests in Touchstone. Next, you can learn
about all the Azure API for FHIR features.

Supported features

https://github.com/microsoft/fhir-server/blob/main/docs/rest/PayerDataExchange/membermatch.http
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/02-PatientByReference&activeOnly=false&contentEntry=TEST_SCRIPTS
https://github.com/microsoft/fhir-server/blob/main/docs/rest/PayerDataExchange/PDex_Sample_Data.http

Register the Azure Active Directory apps for Azure

API for FHIR

3/11/2021 « 2 minutes to read = Edit Online

You have several configuration options to choose from when you're setting up the Azure API for FHIR or the
FHIR Server for Azure (OSS). For open source, you'll need to create your own resource application registration.
For Azure API for FHIR, this resource application is created automatically.

Application registrations

In order for an application to interact with Azure AD, it needs to be registered. In the context of the FHIR server,
there are two kinds of application registrations to discuss:

1. Resource application registrations.

2. Client application registrations.

Resource applications are representations in Azure AD of an API or resource that is secured with Azure AD,
specifically it would be the Azure API for FHIR. A resource application for Azure API for FHIR will be created
automatically when you provision the service, but if you're using the open-source server, you'll need to register
a resource application in Azure AD. This resource application will have an identifier URL. It's recommended that
this URI be the same as the URI of the FHIR server. This URI should be used as the Audience for the FHIR server.
A client application can request access to this FHIR server when it requests a token.

Client applications are registrations of the clients that will be requesting tokens. Often in OAuth 2.0, we
distinguish between at least three different types of applications:

1. Confidential clients, also known as web apps in Azure AD. Confidential clients are applications that use
authorization code flow to obtain a token on behalf of a signed in user presenting valid credentials. They are
called confidential clients because they are able to hold a secret and will present this secret to Azure AD when
exchanging the authentication code for a token. Since confidential clients are able to authenticate themselves
using the client secret, they are trusted more than public clients and can have longer lived tokens and be
granted a refresh token. Read the details on how to register a confidential client. Note that is important to
register the reply url at which the client will be receiving the authorization code.

2. Public clients. These are clients that cannot keep a secret. Typically this would be a mobile device
application or a single page JavaScript application, where a secret in the client could be discovered by a user.
Public clients also use authorization code flow, but they are not allowed to present a secret when obtaining a
token and they may have shorter lived tokens and no refresh token. Read the details on how to register a
public client.

3. Service clients. These clients obtain tokens on behalf of themselves (not on behalf of a user) using the client
credentials flow. They typically represent applications that access the FHIR server in a non-interactive way. An
example would be an ingestion process. When using a service client, it is not necessary to start the process
of getting a token with a call to the /authorize endpoint. A service client can go straight to the /token
endpoint and present client ID and client secret to obtain a token. Read the details on how to register a
service client

Next steps

In this overview, you've gone through the types of application registrations you may need in order to work with
a FHIR API.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-app-registration.md
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-oauth2-client-creds-grant-flow

Based on your setup, please see the how-to-guides to register your applications

® Register a resource application
e Register a confidential client application
® Register a public client application

® Register a service application
Once you have registered your applications, you can deploy the Azure API for FHIR.

Deploy Azure API for FHIR

Register a resource application in Azure Active

Directory

3/11/2021 « 2 minutes to read = Edit Online

In this article, you'll learn how to register a resource (or API) application in Azure Active Directory. A resource
application is an Azure Active Directory representation of the FHIR server APl itself and client applications can
request access to the resource when authenticating. The resource application is also known as the audiencein
OAuth parlance.

Azure API for FHIR

If you are using the Azure API for FHIR, a resource application is automatically created when you deploy the
service. As long as you are using the Azure API for FHIR in the same Azure Active Directory tenant as you are
deploying your application, you can skip this how-to-guide and instead deploy your Azure API for FHIR to get
started.

If you are using a different Azure Active Directory tenant (not associated with your subscription), you can import
the Azure API for FHIR resource application into your tenant with PowerShell:

New-AzADServicePrincipal -ApplicationId 4f6778d8-5aef-43dc-alff-b073724b9495

or you can use Azure CLI:

az ad sp create --id 4f6778d8-5aef-43dc-alff-b073724b9495

FHIR Server for Azure

If you are using the open source FHIR Server for Azure, follow the steps on the GitHub repo to register a

resource application.

Next steps

In this article, you've learned how to register a resource application in Azure Active Directory. Next, register your

confidential client application.

Register Confidential Client Application

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-resource-azure-ad-client-app.md
https://github.com/microsoft/fhir-server/blob/master/docs/Register-Resource-Application.md

Register a confidential client application in Azure

Active Directory

4/9/2021 « 2 minutes to read « Edit Online

In this tutorial, you'll learn how to register a confidential client application in Azure Active Directory (Azure AD).

A client application registration is an Azure AD representation of an application that can be used to authenticate
on behalf of a user and request access to resource applications. A confidential client application is an application
that can be trusted to hold a secret and present that secret when requesting access tokens. Examples of
confidential applications are server-side applications.

To register a new confidential client application, refer to the steps below.

Register a new application

1. In the Azure portal, select Azure Active Directory.

2. Select App registrations.

= Microsoft Azure (Preview) O Search resources, services, and docs (G+/) > @microsoft.
MICROSOFT (MICROSOFT.ONMI

Home > Microsoft

g2 Microsoft | App registrations = - %

Azure Active Directory
« -+ New registration | € Endpoints /2 Troubleshooting | Download Preview features | D Got feedback?

O overview

Getting started

X
@ Ty out the new App registrations search preview! Click to enable the preview. —>
Preview features
K Diagnose and solve problems o

@ starting June 30th, 2020 we will no longer add any new features to Azure Active Directory Authentication Library (ADAL) and Azure AD Graph. We will continue to provide technical support and

Manage security updates but we will no longer provide feature updates. Applications will need to be upgraded to Microsoft Authentication Library (MSAL) and Microsoft Graph. Learn more

& Users

- A\ 1fyou are building an application for external users that will be distributed by Microsoft, you must register as a first party application to meet all security, privacy, and compliance policies.
roups Read our decision guide (7'

B8 External Identitie:

2, Roles and administrators All applications Owned applications Deleted applications (Preview)

3 Administrative units P Start typing a name or Application ID to filter these results

EE Enterprise applications

R Devices Display name Application (client) ID Created on Certificates & secrets

8 App registrations I confidential-fhir-client-steve 664dd7c2- - - - 8806 3/12/2021 @ Current

@) Identity Governance

£ Application proxy

3. Select New registration.
4. Give the application a user-facing display name.
5. For Supported account types, select who can use the application or access the API.

6. (Optional) Provide a Redirect URI. These details can be changed later, but if you know the reply URL of
your application, enter it now.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-confidential-azure-ad-client-app.md
https://portal.azure.com

Search resources, services, and docs (G+ @microsof
osoft Azure (Prev W) 2 Gal) MICROSOFT (MICROSOFT.ONI

Home > Microsoft >

Register an application - X

A\ 1fyou are building an application for external users that will be distributed by Microsoft, you must register as a first party application
to meet all security, privacy, and compliance policies. Read our decision guide ¢

* Name

The user-facing display name for this application (this can be changed later)

[confidential-fhir-client]

Supported account types

Who can use this application or access this API?

(® Accounts in this organizational directory only (Microsoft only - Single tenant)

(O Accounts in any organizational directory (Any Azure AD directory - Multitenant)

(O Accounts in any organizational directory (Any Azure AD directory - Multitenant) and personal Microsoft accounts (e.g. Skype, Xbox)

(O Personal Microsoft accounts only

Help me choose

Redirect URI (optional)

Well return the authentication response to this URI after successfully authenticating the user. Providing this now is optional and it can be
changed later, but a value is required for most authentication scenarios.

| web | | https//my-confidential-client/auth] M|

By proceeding, you agree to the Microsoft Platform Policies &7

7. Select Register.

AP| permissions

Now that you've registered your application, you must select which APl permissions this application should
request on behalf of users.

1. Select APl permissions.

I i Search resources, services, and docs (G+/) @microsoft.
Microsoft Azure (Preview) L (G+/) MICROSOFT (MICROSORONMI

Home > Microsoft > confidential-fhir-client

- confidential-fhir-client | APl permissions = - X
\p Search (Ctrl+/) « () Refresh Q Got feedback?
B overview

& Quickstart
@ The "Admin consent required" column shows the default value for an organization. However, user consent can be customized per permission, user, or app. This column may not reflect the value in your

Integration assistant organization, or in organizations where this app will be used. Learn more
Manage X .

Configured permissions
B Branding

Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The list of configured permissions should include
D Authentication all the permissions the application needs. Learn more about permissions and consent

Certificates & secrets ~+ Add a permission | ~/ Grant admin cons

Il Token configuration

it for Microsoft

API/ Permissions name Type Description Admin consent req... Status

2 API permissions | / Microsoft Graph (1)

@ Expose an API User Read Delegated Sign in and read user profile No

App roles
2
& Owners To view and manage permissions and user consent, try Enterprise applications.

& Roles and administrators | Preview

Manifest

Support + Troubleshooting

Y

Troubleshooting

Bo

New support request

2. Select Add a permission.

If you're using the Azure API for FHIR, you'll add a permission to the Azure Healthcare APIs by searching
for Azure Healthcare APl under APls my organization uses. The search result for Azure Healthcare
APl will only return if you've already deployed the Azure API for FHIR.

If you're referencing a different resource application, select your FHIR APl Resource Application
Registration that you created previously under My APIs.

Request API permissions

Select an API

Microsoft APIs APls my organization uses | My APIs

Apps in your directory that expose APIs are shown below

I/O Azure Healthcare AP

Name Application (client) ID

Azure Healthcare APls Af6778d8-

- b9495

3. Select scopes (permissions) that the confidential client application will ask for on behalf of a user. Select

user_impersonation, and then select Add permissions.

{ All APIs
Azure Healthcare APls

https://*.azurehealthcareapis.com

What type of permissions does your application require?

Delegated permissions Application permissions

Your application needs to access the APl as the signed-in user.

Select permissions

or daemon without a

expand all

’ L Start typing a reply url to filter these results

o The "Admin consent required" column shows the default value for an organization. However, user consent can be customized per
permission, user, or app. This column may not reflect the value in your organization, or in organizations where this app will be used. Learn

more

Permission
' Permissions (1)

user_impersonation

Access Azure Healthcare APIs

Add permissions

Application secret

1. Select Certificates & secrets, and then select New client secret.

Admin consent required

No

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/conf-client-app/confidential-app-org-api-expanded.png#lightbox

Microsoft Azure (Preview) £ Search resources, services, and docs (G+/) @microsoft
'MICROSOFT (MICROSOFT.ONMI

Home > Microsoft > confidential-fhir-client

confidential-fhir-client | Certificates & secrets # - X
[.2 search (ctrl+/) « Q Got feedback?
B overview Credentials enable ions to identify to the ion service when receiving tokens at a web addressable location (using an HTTPS

scheme). For a higher level of assurance, we recommend using a certificate (instead of a client secret) as a credential
& Quickstart

Integration assistant

Certificates
Manage)
Certificates can be used as secrets to prove the application’s identity when requesting a token. Also can be referred to as public keys
B Branding
D Authentication /1 Upload certificate
Certificates & secrets Thumbprint Start date Expires D

Il Token configuration No certificates have been added for this application.
9 APl permissions

@ Expose an APl

App roles Client secrets

& Owners A secret string that the application uses to prove its identity when requesting a token. Also can be referred to as application password.

&l Roles and administrators | Preview

H Manifest
Description Expires Value D
Support + Troubleshooting

No client secrets have been created for this application.
&2 Troubleshooting

& New support request

2. Enter a Description for the client secret. Select the Expires drop-down menu to choose an expiration
time frame, and then click Add.

Add a client secret X

Description Enter a description for this client secret

Expires Recommended: 6 months ~

Recommended: 6 months
3 months

12 months

18 months

24 months

Custom

m l Cancel

3. After the client secret string is created, copy its Value and ID, and store them in a secure location of your

choice.

Client secrets

A secret string that the application uses to prove its identity when requesting a token. Also can be referred to as application password.

+ New client secret

Description Expires Value 1D

my-fhir-client 3/16/2022 Fy_ s 07aa2806-0090-4973-a06e-cf0d431e34af]E

NOTE

The client secret string is visible only once in the Azure portal. When you navigate away from the Certificates & secrets
web page and then return back to it, the Value string becomes masked. It's important to make a copy your client secret
string immediately after it is generated. If you don't have a backup copy of your client secret, you must repeat the above

steps to regenerate it.

Next steps

In this article, you were guided through the steps of how to register a confidential client application in the Azure
AD. You were also guided through the steps of how to add API permissions to the Azure Healthcare API. Lastly,
you were shown how to create an application secret. Furthermore, you can learn how to access your FHIR server

using Postman.

Access Azure API for FHIR with Postman

Register a public client application in Azure Active

Directory

3/11/2021 « 2 minutes to read = Edit Online

In this article, you'll learn how to register a public application in Azure Active Directory.

Client application registrations are Azure Active Directory representations of applications that can authenticate
and ask for APl permissions on behalf of a user. Public clients are applications such as mobile applications and
single page JavaScript applications that can't keep secrets confidential. The procedure is similar to registering a
confidential client, but since public clients can't be trusted to hold an application secret, there's no need to add
one.

The quickstart provides general information about how to register an application with the Microsoft identity
platform.

App registrations in Azure portal

1. In the Azure portal, on the left navigation panel, click Azure Active Directory.

2. Inthe Azure Active Directory blade, click App registrations:

= Microsoft Azure (Preview) £ Search resources, services, and docs (G+/) 5 £ @microsoft... @

MICROSOFT (MICROSOFT.ONML... &

Home > Microsoft

&= Microsoft | App registrations = - «

Azure Active Directory
« -+ New registration | €& Endpoints /2 Troubleshooting | Download Preview features | D Got feedback?

O overview

¥ Getting started

X
@ Ty out the new App registrations search preview! Click to enable the preview. —>
Preview features
K Diagnose and solve problems o

@ starting June 30th, 2020 we will no longer add any new features to Azure Active Directory Authentication Library (ADAL) and Azure AD Graph. We will continue to provide technical support and
security updates but we will no longer provide feature updates. Applications will need to be upgraded to Microsoft Authentication Library (MSAL) and Microsoft Graph. Learn more

Manage

& Users

- A\ 1fyou are building an application for external users that will be distributed by Microsoft, you must register as a first party application to meet all security, privacy, and compliance policies.
roups Read our decision guide (7'

B8 External Identitie:

2. Roles and administrators All applications ~ Owned applications Deleted applications (Preview)

3 Administrative units P Start typing a name or Application ID to filter these results

B Enterprise applications

CH Devices Display name Application (client) ID Created on Certificates & secrets
8 App registrations I confidential-fhir-client-steve 664dd7c2- - - - 8806 3/12/2021 @ Current

(&) Identity Governance

£ Application proxy

3. Click the New registration.

Application registration overview

1. Give the application a display name.

2. Provide a reply URL. The reply URL is where authentication codes will be returned to the client
application. You can add more reply URLs and edit existing ones later.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-public-azure-ad-client-app.md
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://portal.azure.com

Microsoft Azure

Home » 50 - App registrations (Preview

Create a resource Register an application

Name

The user-facing display name for this applicaic

Supported account types

Whao can use this application or access this APIT

®) Accounts in this organizational directory anly contosal

Accounts in ar

directory

Redirect URI {optional)

We'll return the authentication respanse to th

4 it can be changes later. but a value s nequired for

directery and personal Mecrosoft sceounts (e, Skype, Xbo, Outlookeom)

the user. Providing this naw is opticns

|| Public client [mabile & desitop) | [nupsitimy-pusic-a

curity Center

3 cost Management + Billing

[T —

¥ subscriptions

To configure your desktop, mobile or single-page application as public application:

1. In the Azure portal, in App registrations, select your app, and then select Authentication.

2. Select Advanced settings > Default client type. For Treat application as a public client, select

Yes.

3. For asingle-page application, select Access tokens and ID tokens to enable implicit flow.

e [f your application signs in users, select ID tokens.

e [f your application also needs to call a protected web API, select Access tokens.

API permissions

Similarly to the confidential client application, you'll need to select which APl permissions this application should

be able to request on behalf of users:

1. Open the APl permissions.

If you are using the Azure API for FHIR, you will add a permission to the Azure Healthcare APIs by

searching for Azure Healthcare APIs under APls my organization uses. You will only be able to find

this if you have already deployed the Azure API for FHIR.

If you are referencing a different Resource Application, select your FHIR API Resource Application
Registration that you created previously under My APls:

Home > Microsoft - App registrations > hcapisdocs-public-client - API permissions
-%- hcapisdocs-public-client - APl permissions
() Refresh

P Search (Ctrl+/) «

B Overview " o
Configured permissions

% Quickstart Applications are authorized to call APIs when they are granted
all the permissions the application needs. Learn more about pe
Manage
- Add a permission
B Branding
D Authentication API / Permissions name Type
Certificates & secrets \ Microsoft Graph (1)
1! Token configuration (preview) User.Read Delegated

9 API permissions
@ Expose an API
B Owners

Request API permissions

Select an API

Microsoft APIs ~ APIs my organization uses My APIs

Apps in your directory that expose APIs are shown below

[Azure Healthcare

Name Application (client) ID

Azure Healthcare APIs 416778d8-5aef-43dc-a1ff-b073724b9495

https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-desktop-app-registration
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-mobile-app-registration
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-spa-app-registration
https://portal.azure.com

2. Select the permissions that you would like the application to be able to request:

Request APl permissions

C All APIs

Azure Healthcare APls
https://*.azurehealthcareapis.com

What type of permissions does your application require?

Delegated permissions Application permissions
Your application needs to access the APl as the signed-in user. Your application runs as 2 background service or daemon without a
signed-in user,
Select permissions expand all

| Type to search

Permission Admin Consent Required

user_impersonation
Access Azure Healthcare APIs (D

Validate FHIR server authority

If the application you registered in this article and your FHIR server are in the same Azure AD tenant, you are
good to proceed to the next steps.

If you configure your client application in a different Azure AD tenant from your FHIR server, you will need to
update the Authority. In Azure API for FHIR, you do set the Authority under Settings --> Authentication. Set
your Authority to https://login.microsoftonline.com/\.

Next steps

In this article, you've learned how to register a public client application in Azure Active Directory. Next, test
access to your FHIR server using Postman.

Access Azure API| for FHIR with Postman

https://login.microsoftonline.com/%255C

Register a service client application in Azure Active

Directory

3/11/2021 « 2 minutes to read = Edit Online

In this article, you'll learn how to register a service client application in Azure Active Directory. Client application
registrations are Azure Active Directory representations of applications that can be used to authenticate and
obtain tokens. A service client is intended to be used by an application to obtain an access token without
interactive authentication of a user. It will have certain application permissions and use an application secret
(password) when obtaining access tokens.

Follow these steps to create a new service client.

App registrations in Azure portal

1. In the Azure portal, navigate to Azure Active Directory.

2. Select App registrations.

= Microsoft Azure (Preview) £ Search resources, services, and docs (G+/) 5] © @microsoft... @

MICROSOFT (MICROSOFTONM... &

Home > Microsoft

iz Microsoft | App registrations » - x

-
« -+ New registration | € Endpoints /2 Troubleshooting | Download Preview features | D Got feedback?

Azure Active Directory

O overview

Getting started ><
@ Ty out the new App registrations search preview! Click to enable the preview. -

Preview features

K Diagnose and solve problems o

@ starting June 30th, 2020 we will no longer add any new features to Azure Active Directory Authentication Library (ADAL) and Azure AD Graph. We will continue to provide technical support and
security updates but we will no longer provide feature updates. Applications will need to be upgraded to Microsoft Authentication Library (MSAL) and Microsoft Graph. Learn more

Manage

& Users

26 A\ 1fyou are building an application for external users that will be distributed by Microsoft, you must register as a first party application to meet all security, privacy, and compliance policies.
roups Read our decision guide 7'

B8 External Identitie:

2. Roles and administrators All applications ~ Owned applications Deleted applications (Preview)

& Administrative units P Start typing a name or Application ID to filter these results

i Enterprise applications

R Devices Display name Application (client) ID Created on Certificates & secrets

8 App registrations I confidential-fhir-client-steve 664dd7c2- - - - 8806 3/12/2021 @ Current

@) Identity Governance

£ Application proxy

3. Select New registration.

4. Give the service client a display name. Service client applications typically do not use a reply URL.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-service-azure-ad-client-app.md
https://portal.azure.com

Register an application

* Name

The user-facing display name for this application (this can be changed later).

[FHIR-Service-Client] v

Supported account types

Who can use this application or access this API?

@ Accounts in this organizational directory only (Default Directory only - Single tenant)

O Accounts in any organizational directory (Any Azure AD directory - Multitenant)

O Accounts in any organizational directory (Any Azure AD directory - Multitenant) and personal Microsoft accounts (e.g. Skype, Xbox)

O Personal Microsoft accounts only

Help me choose..

Redirect URI (optional)

We'll return the authentication response to this URI after successfully authenticating the user. Providing this now is optional and it can be
changed later, but a value is required for most authentication scenarios.

| Web ~ | | e.g. https://myapp.com/auth

5. Select Register.

API| permissions

Now that you have registered your application, you'll need to select which API permissions this application
should be able to request on behalf of users:

1. Select APl permissions.
2. Select Add a permission.

If you are using the Azure API for FHIR, you will add a permission to the Azure Healthcare APIs by
searching for Azure Healthcare APIs under APIs my organization uses.

If you are referencing a different Resource Application, select your FHIR API Resource Application

Registration that you created previously under My APls.
Request API permissions X

Select an API

Microsoft APIs ~ APls my organization uses My APls

Apps in your directory that expose APIs are shown below

|/O Azure Healthcare AR

Name Application (client) ID

Azure Healthcare APls 4f6778d8-5aef-43dc-a1ff-b07372409495

3. Select scopes (permissions) that the confidential application should be able to ask for on behalf of a user:

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/service-client-app/service-client-org-api-expanded.png#lightbox

Request APl permissions

{ All APIs
. Azure Healthcare APls

https://*.azurehealthcareapis.com

What type of permissions does your application require?

Delegated permissions
‘Your application needs to access the AP as the signed-in user.

Application permissions

Select permissions expand all

O Start typing a reply url to filter these results

Permission Admin consent required

' Permissions (1)

user_impersonation @©
Access Azure Healthcare APls

4. Grant consent to the application. If you don't have the permissions required, check with your Azure Active

Directory administrator:

Home > Default Directory » FHIR-Service-Client

- FHIR-Service-Client | API permissions 2

Querview You are editing permission(s) to your application, users will have to consent even i they've zlready done so previously.

Quickstart
Integration assistant | Preview Configured permissions
i, Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The list of configured permissions should include
anage

all the permissions the application needs. Learn more about permissions and consent

= Branding
+ Add a permission I ~ Grant admin consent for Default Directory I
2 Authentication

API / Permissions name Type Description Admin consent req... Status
Certificates & secrets
" Azure Healthcare APIs (1)
il Token configuration
user_impersonation Delegated ~ Access Azure Healthcare APls ‘

-2 APl permissions

& Expose an API

Delegated Sign in and read user profile
& Owners

Roles and administrators | Preview

Application secret

The service client needs a secret (password) to obtain a token.
1. Select Certificates & secrets.

2. Select New client secret.

L

Microsoft Azure X FeSOUFCes, sérvices, and docs
Home > cor App s (Preview] > senace-chent-application - Certificates & secrets
te a resource: service-client-application - Certificates & secrets # X
Home &«
Dashiboard B oveniew Credentials = b adressable location 795 scheme), Far = higher
level of aszu
Quickstart
Manage
he spplication's i hen regquesting a token. A s public keys.
B Eranding

D Authentication
THUMBFRINT START DATE ExFisEs

tes & secrets

Na certificates have been added for this app

- API permissions
4B Eupose an API

¥, Owners

Client secrets

Bl raanitest

A sexret string that the application uses to prove its dentity when requesting a token. Alsa can be refierred to as application password,

Support + Troubleshaoting

X Treatleshocting [— EXPIRES v
E we

& reew support reguest

Na client secrats have been created for this applization

Management + Billing

[T —

¥ subscriptions

3. Provide a description and duration of the secret (either 1 year, 2 years or never).

4. Once the secret has been generated, it will only be displayed once in the portal. Make a note of it and

store in a securely.

Next steps

In this article, you've learned how to register a service client application in Azure Active Directory. Next, test
access to your FHIR server using Postman.

Access Azure API| for FHIR with Postman

Additional settings for Azure API for FHIR

3/11/2021 « 2 minutes to read ¢ Edit Online

In this how-to guide, we will review the additional settings you may want to set in your Azure API for FHIR.
There are additional pages that drill into even more details.

Configure Database settings

Azure API for FHIR uses database to store its data. Performance of the underlying database depends on the
number of Request Units (RU) selected during service provisioning or in database settings after the service has
been provisioned.

Throughput must be provisioned to ensure that sufficient system resources are available for your database at all
times. How many RUs you need for your application depends on operations you perform. Operations can range
from simple read and writes to more complex queries.

For more information on how to change the default settings, see configure database settings.

Access control

The Azure API for FHIR will only allow authorized users to access the FHIR API. You can configure authorized
users through two different mechanisms. The primary and recommended way to configure access control is
using Azure role-based access control (Azure RBAC), which is accessible through the Access control (IAM)
blade. Azure RBAC only works if you want to secure data plane access using the Azure Active Directory tenant
associated with your subscription. If you wish to use a different tenant, the Azure API for FHIR offers a local FHIR
data plane access control mechanism. The configuration options are not as rich when using the local RBAC
mechanism. For details, choose one of the following options:

e Azure RBAC for FHIR data plane. This is the preferred option when you are using the Azure Active Directory
tenant associated with your subscription.

e | ocal FHIR data plane access control. Use this option only when you need to use an external Azure Active
Directory tenant for data plane access control.

Enable diagnostic logging

You may want to enable diagnostic logging as part of your setup to be able to monitor your service and have
accurate reporting for compliance purposes. For details on how to set up diagnostic logging, see our how-to-
guide on how to set up diagnostic logging, along with some sample queries.

Use custom headers to add data to audit logs

In the Azure API for FHIR, you may want to include additional information in the logs, which comes from the
calling system. To do including this information, you can use custom headers.

You can use custom headers to capture several types of information. For example:

e |dentity or authorization information
e Origin of the caller
e Originating organization

e Client system details (electronic health record, patient portal)

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/azure-api-for-fhir-additional-settings.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/index

To add this data to your audit logs, see the Use Custom HTTP headers to add data to Audit Logs how-to-guide.

Next steps

In this how-to guide, you set up additional settings for the Azure API for FHIR.
Next check out the series of tutorials to create a web application that reads FHIR data.

Deploy JavaScript application

Configure Azure RBAC for FHIR

3/11/2021 « 2 minutes to read ¢ Edit Online

In this article, you will learn how to use Azure role-based access control (Azure RBAC) to assign access to the
Azure API for FHIR data plane. Azure RBAC is the preferred methods for assigning data plane access when data
plane users are managed in the Azure Active Directory tenant associated with your Azure subscription. If you are
using an external Azure Active Directory tenant, refer to the local RBAC assignment reference.

Confirm Azure RBAC mode

To use Azure RBAC, your Azure API for FHIR must be configured to use your Azure subscription tenant for data
plane and there should be no assigned identity object IDs. You can verify your settings by inspecting the
Authentication blade of your Azure API for FHIR:

|p Search (Ctrl+/) | « save X Discard () Refresh

& Ooverview View and configure authentication settings; specify Azure AD object ID (Users or Apps) that should be allowed to access this Azure API for FHIR.
Activity log Authority must be registered to Azure AD and in the following format: https://{Azure-AD-endpoint}/{tenant-id}. Examples:
https://login.microsoftonline.com/contoso.onmicrosoft.com, https://login.microsoftonline.com/abfde7b2-df0f-47e6-aabf-2462b07508dc. Audience
must be a URI or GUID secured by Azure AD. Please refer to https://docs.microsoft.com/azure/healthcare-apis/register-resource-azure-ad-client-app

® Tags for details.

%{ Access control (IAM)

Authority * | https://login.microsoftonline.com/ <tenant id> v |
Settings
N At Audience * | https://documentdemo.azurehealthcareapis.com \/I
>
& CORS Allowed object IDs @
)

B! Database
@ Integration

o Identity

£ Locks Use Azure Access Control (IAM) to grant access your FHIR service when using the subscription tenant for
K2 Export t Jat data plane RBAC. Learn more.

xport template

SMART on FHIR proxy © |
Monitoring

41 Metrics

B Diagnostic settings

D Logs

Support + troubleshooting

@ New support request

The Authority should be set to the Azure Active directory tenant associated with your subscription and there
should be no GUIDs in the box labeled Allowed object IDs. You will also notice that the box is disabled and a

label indicates that Azure RBAC should be used to assign data plane roles.

Assign roles

To grant users, service principals or groups access to the FHIR data plane, click Access control (IAM), then click
Role assignments and click + Add:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-azure-rbac.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/index

|/0 Search (Ctrl+/) ‘ « —+ Add | == Edit columns O Refresh | X Remove Q Got feedback?

@ overview Check access Role assignments Deny assignments Classic administrators ~ Roles

B Activity log

Manage access to Azure resources for users, groups, service principals and managed identities at this scope by creating role assignments. Learn more cf
PR Access control (IAM)

Number of role assignments for this subscription ©

® Tags —
Is20 2000
Settings
N Name © Type © Role ©® Scope @
Authenticati
2> Authentication ‘ ‘ [All v I [14 selected v ‘ [All scopes v
&) CORs Group by ©
B Database l Role VI
& Integration
» Identity
) Locks 0 items
B2 Export template Name Type Role Scope
Monitoring No user assignments exist
.’.‘:i Metrics

E Diagnostic settings

@ Logs

Support + troubleshooting

,@ New support request

In the Role selection, search for one of the built-in roles for the FHIR data plane:

Add role assignment

Role ()
FHIR Data Reader O N

Assign access to (D

Azure AD user, group, or service principal v

Select ©
fhir-clig]

fhir-client

Selected members:

fhir-client
Remove

You can choose between:

e FHIR Data Reader: Can read (and search) FHIR data.
o FHIR Data Writer: Can read, write, and soft delete FHIR data.
e FHIR Data Exporter: Can read and export ($export operator) data.

e FHIR Data Contributor: Can perform all data plane operations.
If these roles are not sufficient for your need, you can also create custom roles.

In the Select box, search for a user, service principal, or group that you wish to assign the role to.

Caching behavior

The Azure API for FHIR will cache decisions for up to 5 minutes. If you grant a user access to the FHIR server by
adding them to the list of allowed object IDs, or you remove them from the list, you should expect it to take up

to five minutes for changes in permissions to propagate.

Next steps

In this article, you learned how to assign Azure roles for the FHIR data plane. To learn about additional settings
for the Azure API for FHIR:

https://docs.microsoft.com/en-us/azure/role-based-access-control/tutorial-custom-role-powershell

Additional settings for Azure API for FHIR

Configure local RBAC for FHIR

3/11/2021 « 2 minutes to read ¢ Edit Online

This article explains how to configure the Azure API for FHIR to use an external, secondary Azure Active
Directory tenant for managing data plane access. Use this mode only if it is not possible for you to use the Azure
Active Directory tenant associated with your subscription.

NOTE

If your FHIR service data plane is configured to use your primary Azure Active Directory tenant associated with your
subscription, use Azure RBAC to assign data plane roles.

Add service principal

Local RBAC allows you to use an external Azure Active Directory tenant with your FHIR server. In order to allow
the local RBAC system to check group memberships in this tenant, the Azure API for FHIR must have a service
principal in the tenant. This service principal will get created automatically in tenants tied to subscriptions that
have deployed the Azure API for FHIR, but in case your tenant has no subscription tied to it, a tenant
administrator will need to create this service principal with one of the following commands:

Using the Az PowerShell module:

New-AzADServicePrincipal -ApplicationId 3274406e-4e@a-4852-badf-d7226630abb7
or you can use the Azuread PowerShell module:

New-AzureADServicePrincipal -AppId 3274406e-4e0a-4852-badf-d7226630abb7
or you can use Azure CLI:

az ad sp create --id 3274406e-4e0a-4852-badf-d7226630abb7

Configure local RBAC

You can configure the Azure API for FHIR to use an external or secondary Azure Active Directory tenant in the
Authentication blade:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-local-rbac.md

\p Search (Ctrl+/) ‘ « save X Discard () Refresh

& Overview View and configure authentication settings; specify Azure AD object ID (Users or Apps) that should be allowed to access this Azure API for FHIR.

E Activity log Authority must be registered to Azure AD and in the following format: https://{Azure-AD-endpoint}/{tenant-id}. Examples:
https://login.microsoftonline.com/contoso.onmicrosoft.com, https://login.microsoftonline.com/abfde7b2-df0f-47e6-aabf-2462b07508dc. Audience
must be a URI or GUID secured by Azure AD. Please refer to https://docs.microsoft.com/azure/healthcare-apis/register-resource-azure-ad-client-app

¢ Tags for details.

Authority * | https://login.microsoftonline.com/ <tenant id> v‘

&{ Access control (IAM)

Settings

. " N .
® Authentication Audience l https://documentdemo.azurehealthcareapis.com \/l

@ CORS Allowed object IDs © 00000000-0000-0000-0000-000000000000 v
B Database
@ Integration

Identity

E] Locks

SMART on FHIR proxy © O
i3 Export template

Monitoring

@ Metrics

& Diagnostic settings

D Logs

Support + troubleshooting

@ New support request

In the authority box, enter a valid Azure Active Directory tenant. Once the tenant has been validated, the
Allowed object IDs box should be activated and you can enter a list of identity object IDs. These IDs can be the
identity object IDs of:

e An Azure Active Directory user.
e An Azure Active Directory service principal.

e An Azure Active directory security group.
You can read the article on how to find identity object IDs for more details.

After entering the required object IDs, click Save and wait for changes to be saved before trying to access the
data plane using the assigned users, service principals, or groups.

Caching behavior

The Azure API for FHIR will cache decisions for up to 5 minutes. If you grant a user access to the FHIR server by
adding them to the list of allowed object IDs, or you remove them from the list, you should expect it to take up

to five minutes for changes in permissions to propagate.

Next steps

In this article, you learned how to assign FHIR data plane access using an external (secondary) Azure Active
Directory tenant. Next learn about additional settings for the Azure API for FHIR:

Additional settings Azure API for FHIR

Configure database settings

3/11/2021 « 2 minutes to read ¢ Edit Online

Azure API for FHIR uses database to store its data. Performance of the underlying database depends on the
number of Request Units (RU) selected during service provisioning or in database settings after the service has
been provisioned.

Azure API for FHIR borrows the concept of RUs from Cosmos DB (see Request Units in Azure Cosmos DB) when
setting the performance of underlying database.

Throughput must be provisioned to ensure that sufficient system resources are available for your database at all
times. How many RUs you need for your application depends on operations you perform. Operations can range
from simple read and writes to more complex queries.

NOTE

As different operations consume different number of RU, we return the actual number of RUs consumed in every API call
in response header. This way you can profile the number of RUs consumed by your application.

Update throughput

To change this setting in the Azure portal, navigate to your Azure API for FHIR and open the Database blade.
Next, change the Provisioned throughput to the desired value depending on your performance needs. You can
change the value up to a maximum of 10,000 RU/s. If you need a higher value, contact Azure support.

If the database throughput is greater than 10,000 RU/s or if the data stored in the database is more than 50 GB,
your client application must be capable of handling continuation tokens. A new partition is created in the
database for every throughput increase of 10,000 RU/s or if the amount of data stored is more than 50 GB.
Multiple partitions creates a multi-page response in which pagination is implemented by using continuation
tokens.

NOTE
Higher value means higher Azure API for FHIR throughput and higher cost of the service.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-database.md
https://docs.microsoft.com/en-us/azure/cosmos-db/request-units

Home » Azure APl for FHIR > fhirdemoaccount - Database

@ fhirdemoaccount - Database

Azure AP| for FHIR

« — -
| £ Search (Cirl+/) | & save O Refresh
@ Overview Specify the desired throughput (RU/s) for the database account used by your Azure API for FHIR. Please refer to
o https://docs.microsoft.com/en-us/azure/healthcare-apis/configure-database for more details on Request Units. You can set a
Activity log maximum of 10,000 RU/s. If you need more than 10,000 RU/s, please contact Azure support.
. Access control (1AM) Provisioned throughput (RU/s) * @ 400
L Tags
Settings

» Authentication
& CORS

El Database

o

1 Locks

B Export template
Meonitoring

fifl Metrics
Diagnostic settings
#® 1ogs

Support + troubleshooting

2 New support request

Next steps

In this article, you learned how to update your RUs for Azure API for FHIR. To learn about configuring customer-
managed keys as a database setting:

Configure customer-managed keys
Or you can deploy a fully managed Azure API for FHIR:

Deploy Azure API for FHIR

Configure customer-managed keys at rest

5/28/2021 < 3 minutes to read = Edit Online

When you create a new Azure API for FHIR account, your data is encrypted using Microsoft-managed keys by
default. Now, you can add a second layer of encryption for the data using your own key that you choose and

manage yourself.

In Azure, this is typically accomplished using an encryption key in the customer's Azure Key Vault. Azure SQL,
Azure Storage, and Cosmos DB are some examples that provide this capability today. Azure API for FHIR
leverages this support from Cosmos DB. When you create an account, you will have the option to specify an
Azure Key Vault key URI. This key will be passed on to Cosmos DB when the DB account is provisioned. When a
FHIR request is made, Cosmos DB fetches your key and uses it to encrypt/decrypt the data.

To get started, refer to the following links:

e Register the Azure Cosmos DB resource provider for your Azure subscription
e Configure your Azure Key Vault instance
e Add an access policy to your Azure Key Vault instance

e Generate a key in Azure Key Vault

Using Azure portal

When creating your Azure API for FHIR account on Azure portal, you'll notice Data Encryption configuration
option under the Database Settings on the Additional Settings tab. By default, the service-managed key
option will be selected.

IMPORTANT

The data encryption option is only available when the Azure API for FHIR is created and cannot be changed afterwards.

However, you can view and update the encryption key if the Customer-managed key option is selected.

You can choose your key from the KeyPicker:

Home Azure API for FHIR Create Azure AP| for FHIR

Select key from Azure Key Vault

Subscription = | Resclute Test1 LY
Key vault * sctalabyokvault LY
Create naw

Key™ ! s

alect the key

byokkey ,\f"_'j

bryvokdeey2

disabled-key
key-uze-2048
key-size-4006

key-type-EC

You can also specify your Azure Key Vault key here by selecting Customer-managed key option.

You can also enter the key URI here:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/customer-managed-key.md
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk

Home > Azure API for FHIR >

Create Azure API for FHIR

"Basics " Additional settings Tags Rewview + create

Customize additional configuration parameters including authentication and storage,

Authentication

Authority * | https://login.microsoftonline.com/ecda3dfb-44bb-4cc7-bf56-9b4e264f1... v |

Audience * | https://shmartel-docs-byok-on-2.azurehealthcareapis.com e |

Allowed object IDs ®

Use Azure Access Control (IAM) to grant access your FHIR service when
using the subscription tenant for data plane RBAC. Learn more.

SMART on FHIR proxy (& D

Database Settings
Provisioned throughput (RU/s) * (@ | 400 v

Data Encryption & O Service-managed key
@ Customer-managed key

Key URI * | Example: https://<my-vault>.vault.azure.net/keys/<my-key>

IMPORTANT

Ensure all permissions for Azure Key Vault are set appropriately. For more information, see Add an access policy to your
Azure Key Vault instance. Additionally, ensure that the soft delete is enabled in the properties of the Key Vault. Not
completing these steps will result in a deployment error. For more information, see Verify if soft delete is enabled on a key

vault and enable soft delete.

For existing FHIR accounts, you can view the key encryption choice (Service-managed key or Customer-
managed key) in the Database blade as shown below. The configuration option can't be modified once it's
selected. However, you can modify and update your key.

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk#add-access-policy
https://docs.microsoft.com/en-us/azure/key-vault/general/key-vault-recovery?tabs=azure-portal#verify-if-soft-delete-is-enabled-on-a-key-vault-and-enable-soft-delete

>k-on-1| Database

Specify the desired throughput (RU/s) for the database account used by your Azure AP for FHIR. Please refer to https://docs.microsoft.com/en-us/azure;
please contact Azure support.

Provisioned throughput (RU/s) * & 400

Specify the key used to encrypt the database at rest. The selection for service-managed or customer-managed keys can only be done at creation time.

yata E tion o e-managed ke 15 o

Key URI * https://sctalabyokvault.vault. azure.net/keys/byokkey2

In addition, you can create a new version of the specified key, after which your data will get encrypted with the

new version without any service interruption. You can also remove access to the key to remove access to the

data. When the key is disabled, queries will result in an error. If the key is re-enabled, queries will succeed again.

Using Azure PowerShell

With your Azure Key Vault key URI, you can configure CMK using PowerShell by running the PowerShell

command below:

New-AzHealthcareApisService
-Name "myService"
-Kind "fhir-Rr4"
-ResourceGroupName "myResourceGroup"
-Location "westus2"
-CosmosKeyVaultKeyUri "https://<my-vault>.vault.azure.net/keys/<my-key>"

Using Azure CLI

As with PowerShell method, you can configure CMK by passing your Azure Key Vault key URI under the

key-vault-key-uri parameter and running the CLI command below:

az healthcareapis service create
--resource-group "myResourceGroup"
--resource-name "myResourceName"
--kind "fhir-R4"
--location "westus2"
--cosmos-db-configuration key-vault-key-uri="https://<my-vault>.vault.azure.net/keys/<my-key>"

Using Azure Resource Manager Template

With your Azure Key Vault key URI, you can configure CMK by passing it under the keyVaultKeyUri property in

the properties object.

"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"services_myService_name": {
"defaultValue": "myService",
"type": "String"

}J
"variables": {},
"resources": [

{
"type": "Microsoft.HealthcareApis/services"”,
"apiVersion": "2020-03-30",
"name": "[parameters('services_myService_name')]",

"location": "westus2",
"kind": "fhir-R4",
"properties": {
"accessPolicies": [],
"cosmosDbConfiguration": {
"offerThroughput": 400,
"keyVaultKeyUri": "https://<my-vault>.vault.azure.net/keys/<my-key>"
s
"authenticationConfiguration": {
"authority": "https://login.microsoftonline.com/72f988bf-86f1-41af-91ab-2d7cde11db47",
"audience": "[concat('https://', parameters('services_myService_name'),
'.azurehealthcareapis.com')]",
"smartProxyEnabled": false
s
"corsConfiguration": {
"origins": [],
"headers": [],
"methods": [],
"maxAge": O,
"allowCredentials": false

And you can deploy the template with the following PowerShell script:

$resourceGroupName = "myResourceGroup"
$accountName = "mycosmosaccount”
$accountLocation = "West US 2"

$keyVaultKeyUri = "https://<my-vault>.vault.azure.net/keys/<my-key>"

New-AzResourceGroupDeployment °
-ResourceGroupName $resourceGroupName °
-TemplateFile "deploy.json" °
-accountName $accountName °
-location $accountLocation °
-keyVaultKeyUri $keyVaultKeyUri

Next steps

In this article, you learned how to configure customer-managed keys at rest using the Azure portal, PowerShell,
CLI, and Resource Manager Template. You can refer to the Azure Cosmos DB FAQ section for more information.

Cosmos DB: how to setup CMK

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk

Configure cross-origin resource sharing in Azure

API for FHIR

3/11/2021 « 2 minutes to read = Edit Online

Azure API for Fast Healthcare Interoperability Resources (FHIR) supports cross-origin resource sharing (CORS).
CORS allows you to configure settings so that applications from one domain (origin) can access resources from
a different domain, known as a cross-domain request.

CORS is often used in a single-page app that must call a RESTful API to a different domain.
To configure a CORS setting in the Azure API for FHIR, specify the following settings:

e Origins (Access-Control-Allow-Origin). A list of domains allowed to make cross-origin requests to
the Azure API for FHIR. Each domain (origin) must be entered in a separate line. You can enter an asterisk
(*) to allow calls from any domain, but we don't recommend it because it's a security risk.

e Headers (Access-Control-Allow-Headers). A list of headers that the origin request will contain. To
allow all headers, enter an asterisk (*).

o Methods (Access-Control-Allow-Methods). The allowed methods (PUT, GET, POST, and so on) in an
API call. Choose Select all for all methods.

e Max age (Access-Control-Max-Age). The value in seconds to cache preflight request results for
Access-Control-Allow-Headers and Access-Control-Allow-Methods.

e Allow credentials (Access-Control-Allow-Credentials). CORS requests normally don’t include
cookies to prevent cross-site request forgery (CSRF) attacks. If you select this setting, the request can be
made to include credentials, such as cookies. You can't configure this setting if you already set Origins
with an asterisk (*).

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-cross-origin-resource-sharing.md
https://wikipedia.org/wiki/Cross-Origin_Resource_Sharing
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Home > matjazl-thir - CORS
@ matjazl-fhir - CORS

Azure API for FHIR

|p Search (Cmd+/) | « Save X Discard () Refresh

& Overview

to access a resource

ith a different domain (a cross-domain request). Without features like CORS, websites are

Activity log restricted to accessing resources from the same origin through what is known as same-origin policy. Please refer
to https://docs.microsoft.com/azure/healthcare-apis/configure-cross-origin-resource-sharing for details on how to

A2 Access control (IAM) tpsi// ! /azure/ pis/configu igi u ing i w
configure CORS.

® Tags Origins © * v

Settings

2 Authentication

&) CORS

& Cosmos DB
Headers © *

[9] Locks

¥4 Export template

Monitoring

44 Metrics

[Diagnostic settings Methods © ‘ 6 selected N ’

D

{0 Logs Max age ® ‘ 600 ’

Support + troubleshooting Allow credentials D

2 New support request

NOTE

You can't specify different settings for different domain origins. All settings (Headers, Methods, Max age, and Allow
credentials) apply to all origins specified in the Origins setting.

Next steps

In this article, you learned how to configure cross-origin sharing in Azure API for FHIR. Next deploy a fully
managed Azure API for FHIR:

Deploy Azure API for FHIR

Configure export setting and set up the storage

account

5/17/2021 « 2 minutes to read « Edit Online

Azure API for FHIR supports $export command that allows you to export the data out of Azure API for FHIR
account to a storage account.

There are three steps involved in configuring export in Azure API for FHIR:

1. Enable Managed Identity on Azure API for FHIR Service.

2. Creating a Azure storage account (if not done before) and assigning permission to Azure API for FHIR to the
storage account.

3. Selecting the storage account in Azure API for FHIR as export storage account.

Enabling Managed Identity on Azure API for FHIR

The first step in configuring Azure API for FHIR for export is to enable system wide managed identity on the
service. For more information about managed identities in Azure, see About managed identities for Azure
resources.

To do so, go to the Azure API for FHIR service and select Identity. Changing the status to On will enable
managed identity in Azure API for FHIR Service.

fhir-docs - Identity X
Azure API for FHIR
[£ Search (Cmd+/) ‘ « System assigned
& Overview A system assigned managed identity enables Azure resources to authenticate to cloud services (e.g. Azure Key Vault) without
storing credentials in code. Once enabled, all necessary permissions can be granted via Azure role-based-access-control. The
Activity log lifecycle of this type of managed identity is tied to the lifecycle of this resource. Additionally, each resource (e.g. Virtual Machine)

can only have one system assigned managed identity. Learn more about Managed identities.
RR Access control (IAM)

® Tags X piscard (O Refresh Q Got feedback?

Settings
Status ©
> Authentication]
&) CORS
Object ID ©
& Database [1d330b79-ccAe-418d-8e2b-b7171cBbcfe? D)
& Integration
9 Role assignments ©
| > Identity | Show the Azure RBAC roles assigned to this managed identity
ﬁ Locks
2 Export template 0 This resource is registered with Azure Active Directory. You can control its access to services like Azure Resource Manager, Azure
Key Vault, etc. Learn more
Monitoring
41 Metrics

Diagnostic settings

Now, you can move to the next step by creating a storage account and assign permission to our service.

Adding permission to storage account

The next step in export data is to assign permission for Azure API for FHIR service to write to the storage
account.

After you've created a storage account, go to the Access Control (IAM) in the storage account, and then select
Add role assignment.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-export-data.md
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

For more information about assigning roles in the Azure portal, see Azure built-in roles.

It is here that you'll add the role Storage Blob Data Contributor to our service name, and then select Save.

Add role assignment X

Role (D

| Select a role RV |

Assign access to (O

| User, group, or service principal R |

select (@

| Search by name or email address |

. Admin

. Alain

. Alain Team
AT

Selected members:
Mo members selected. Search for and add one or more
members you want to assign to the role for this resource.

Learn more about RBAC

Save Discard

Now you are ready to select the storage account in Azure API for FHIR as a default storage account for $export.

Selecting the storage account for $export

The final step is to assign the Azure storage account that Azure API for FHIR will use to export the data to. To do
this, go to Integration in Azure API for FHIR service and select the storage account.

https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#storage-blob-data-contributor

fhir-docs | Integration

Azure API for FHIR

|p Search (Cmd+/) | «

& Overview

Activity log

A9 Access control (IAM)
‘ Tags

Settings

> Authentication

) CORS

Database

|

Integration

» ldentity

=}

Locks

<!

Export template

save X Discard O Refresh

Views and configures settings for integrating the Azure API for FHIR server with other Azure services.

Export

When attaching a storage account for export make sure that the FHIR server has permission to access it by
enabling System Assigned Managed Identity and giving Azure API for FHIR permission to the storage account.

Export Storage Account fhirexporter
Y Name Y Resource group: matjazl-fhir pl Y Region: westus2
Name T Resource group T Region T

‘ fhirexporter matjazl-fhir-sample westus2

After you've completed this final step, you are now ready to export the data using $export command.

NOTE

Only storage accounts in the same subscription as that for Azure API for FHIR are allowed to be registered as the
destination for $export operations.

For more information about configuring database settings, access control, enabling diagnostic logging, and

using custom headers to add data to audit logs, see:

Additional Settings

Configure private link

5/28/2021 < 3 minutes to read = Edit Online

Private link enables you to access Azure API for FHIR over a private endpoint, which is a network interface that
connects you privately and securely using a private IP address from your virtual network. With private link, you
can access our services securely from your VNet as a first party service without having to go through a public
Domain Name System (DNS). This article describes how to create, test, and manage your private endpoint for
Azure API for FHIR.

NOTE
Neither Private Link nor Azure API for FHIR can be moved from one resource group or subscription to another once
Private Link is enabled. To make a move, delete the Private Link first, then move Azure API for FHIR. Create a new Private

Link once the move is complete. Assess potential security ramifications before deleting Private Link.

If exporting audit logs and metrics is enabled for Azure API for FHIR, update the export setting through Diagnostic
Settings from the portal.

Prerequisites

Before creating a private endpoint, there are some Azure resources that you'll need to create first:

e Resource Group — The Azure resource group that will contain the virtual network and private endpoint.
e Azure API for FHIR — The FHIR resource you would like to put behind a private endpoint.

e Virtual Network — The VNet to which your client services and Private Endpoint will be connected.

For more information, see Private Link Documentation.

Create private endpoint

To create a private endpoint, a developer with Role-based access control (RBAC) permissions on the FHIR
resource can use the Azure portal, Azure PowerShell, or Azure CLI. This article will guide you through the steps
on using Azure portal. Using the Azure portal is recommended as it automates the creation and configuration of
the Private DNS Zone. For more information, see Private Link Quick Start Guides.

There are two ways to create a private endpoint. Auto Approval flow allows a user that has RBAC permissions on
the FHIR resource to create a private endpoint without a need for approval. Manual Approval flow allows a user
without permissions on the FHIR resource to request a private endpoint to be approved by owners of the FHIR

resource.

NOTE

When an approved private endpoint is created for Azure API for FHIR, public traffic to it is automatically disabled.

Auto approval

Ensure the region for the new private endpoint is the same as the region for your virtual network. The region for
your FHIR resource can be different.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-private-link.md
https://docs.microsoft.com/en-us/azure/private-link/index
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-powershell
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-cli
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-portal

Home > gina-test >

Create a private endpoint &

A Changes you make on this tab may affect any configuration you've done on other tabs. Review all options prior to creating the private endpoint.

v/ Basics 2) Resource 3) Configuration 4)Tags 5) Review + create

Use private endpoints to privately connect to a service or resource. Your private endpoint must be in the same region as your
virtual network, but can be in a different region from the private link resource that you are connecting to. Learn more

Project details

Subscription * @ | Health Demo v |
Resource group * © | gina-test v |
Create new

Instance details

Name * | gina-pl-example \/l

Region * | Us) west Us 2 v |

For the resource type, search and select Microsoft.HealthcareApis/services. For the resource, select the FHIR
resource. For target sub-resource, select FHIR.

Create a private endpoint &

v/ Basics 2 Resource 3) Configuration 4) Tags 5) Review + create

Private Link offers options to create private endpoints for different Azure resources, like your private link service, a SQL server,
or an Azure storage account. Select which resource you would like to connect to using this private endpoint. Learn more

Connection method (@ @ Connect to an Azure resource in my directory.

O Connect to an Azure resource by resource ID or alias.

Subscription * @ | Health Demo v |
Resource type * (O | Microsoft.HealthcareApis/services A4 |
Resource * I test-thir-1 v |

If you do not have an existing Private DNS Zone set up, select (New)privatelink.azurehealthcareapis.com. If
you already have your Private DNS Zone configured, you can select it from the list. It must be in the format of
privatelink.azurehealthcareapis.com.

Create a private endpoint

V/ Basics “/Resource 3 Configuration 4 Tags 5) Review + create

Networking

To deploy the private endpoint, select a virtual network subnet. Learn more

Virtual network * @ l plexample v l

Subnet * © | default (10.8.0.0/24) v

@ If you have a network security group (NSG) enabled for the subnet above, it
will be disabled for private endpoints on this subnet only. Other resources on
the subnet will still have NSG enforcement.

Private DNS integration

To connect privately with your private endpoint, you need a DNS record. We recommend that you integrate your private
endpoint with a private DNS zone. You can also utilize your own DNS servers or create DNS records using the host files on your
virtual machines. Learn more

Integrate with private DNS zone @ Yes O No
Configuration name Subscription Private DNS zones
privatelink-azurehealt... your subscription here v | ’ (New) privatelink.azurehealthcareapis.com v

After the deployment is complete, you can go back to Private endpoint connections tab of which you'll
notice Approved as the connection state.

Manual Approval

For manual approval, select the second option under Resource, "Connect to an Azure resource by resource ID or
alias". For Target sub-resource, enter "fhir" as in Auto Approval.

Create a private endpoint &

~ Basics 2 Resource i | Configuration 4/ Tags 5 | Review + create

Private Link offers options to create private endpoints for different Azure resources, like your private link service, a SQL server,
or an Azure storage account. Select which resource you would like to connect to using this private endpoint. Learn more

Connection method () O Connect to an Azure resource in my directory.

@ Connect to an Azure resource by resource |D or alias.

After the deployment is complete, you can go back to "Private endpoint connections” tab, on which you can
Approve, Reject, or Remove your connection.

Public access Private endpoint connections

+ Private endpoint ~/ Approve X Reject [T Remove () Refresh
| Filter by name... | | All connection states Y |
I:‘ COMNNECTION NAME COMNNECTION STATE PRIVATE ENDPOINT DESCRIPTION

Test private endpoint

To ensure that your FHIR server is not receiving public traffic after disabling public network access, select the

/metadata endpoint for your server from your computer. You should receive a 403 Forbidden.

NOTE

It can take up to 5 minutes after updating the public network access flag before public traffic is blocked.

To ensure your private endpoint can send traffic to your server:

1. Create a virtual machine (VM) that is connected to the virtual network and subnet your private endpoint is
configured on. To ensure your traffic from the VM is only using the private network, disable the outbound
internet traffic using the network security group (NSG) rule.

2. RDP into the VM.

3. Access your FHIR server’s /metadata endpoint from the VM. You should receive the capability statement as a
response.

Manage private endpoint
View

Private endpoints and the associated network interface controller (NIC) are visible in Azure portal from the
resource group they were created in.

() pl-example =

Resource group

|/9 Search (Ctrl+)) | &« -+ Add =Z Editcolumns [Delete resource group () Refresh —> Move ~ + E

[Overview A Essentials

Activity log N
Ra. Access control (I1AM) . h }
- Tags (change) : Click here to add tags
Events | Filter by name... | Type == all X Location == all X "y Addfilter
Settings Showing 1 to 5 of 5 records. D Show hidden types @
& Quickstart D Name T
@ Resource costs [@ plexample
& Deployments ID > plexample
B policies [] 4> plexample
5 Properties I|:| B plexamplenicet f
8 Locks [@ privatelink.azurehealthcareapis.com
Delete

Private endpoints can only be deleted from the Azure portal from the Overview blade or by selecting the
Remove option under the Networking Private endpoint connections tab. Selecting Remove will delete the
private endpoint and the associated NIC. If you delete all private endpoints to the FHIR resource and the public
network, access is disabled and no request will make it to your FHIR server.

+ add O Refresh

Showing 1 to 26 of 26 records.

Previous Page
IE' Name Ty Resource Ty Target sub-resource Ty Subnet Ty Connection state Ty
\:\ pel @ anr fhir :an/default Approved

D peportal

O testr

<

anr . fhir 1/default Approved
@ createflowone fhir :an/default Approved

\:\ pe-portal @ ertr fhir llcan/default Approved
D pe-pshell Qe fhir lcan/default Approved
D fhir-api-private-endpoint @ fhir-api-private-link fhir fhir-api-virtual-network/default Approved
@

. plexample plexample fhir plexample/default Approved

Overview of FHIR search

5/25/2021 « 7 minutes to read » Edit Online

The FHIR specification defines the fundamentals of search for FHIR resources. This article will guide you through
some key aspects to searching resources in FHIR. For complete details about searching FHIR resources, refer to
Search in the HL7 FHIR Specification. Throughout this article, we will give examples of search syntax. Each
search will be against your FHIR server, which typically has a URL of

https://<FHIRSERVERNAME>.azurewebsites.net . In the examples, we will use the placeholder {{FHIR_URL}} for this
URL.

FHIR searches can be against a specific resource type, a specified compartment, or all resources. The simplest
way to execute a search in FHIR is to use a GeT request. For example, if you want to pull all patients in the
database, you could use the following request:

GET {{FHIR_URL}}/Patient

You can also search using posT , which is useful if the query string is too long. To search using posT , the search
parameters can be submitted as a form body. This allows for longer, more complex series of query parameters
that might be difficult to see and understand in a query string.

If the search request is successful, you'll receive a FHIR bundle response with the type searchset . If the search
fails, you'll find the error details in the operationoutcome to help you understand why the search failed.

In the following sections, we'll cover the various aspects involved in searching. Once you've reviewed these
details, refer to our samples page that has examples of searches that you can make in the Azure API for FHIR.

Search parameters

When you do a search, you'll search based on various attributes of the resource. These attributes are called
search parameters. Each resource has a set of defined search parameters. The search parameter must be defined
and indexed in the database for you to successfully search against it.

Each search parameter has a defined data types. The support for the various data types is outlined below:

SEARCH PARAMETER SUPPORTED - OSS SUPPORTED - OSS

TYPE SUPPORTED - PAAS (sQL) (COSMOS DB) COMMENT

number Yes Yes Yes

date Yes Yes Yes

string Yes Yes Yes

token Yes Yes Yes

reference Yes Yes Yes

composite Partial Partial Partial The list of supported

composite types is
described later in this
article

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/overview-of-search.md
https://www.hl7.org/fhir/search.html
https://www.hl7.org/fhir/compartmentdefinition.html
https://www.hl7.org/fhir/search.html#ptypes

SEARCH PARAMETER
TYPE

quantity

uri

special

SUPPORTED - PAAS

Yes

Yes

No

Common search parameters

SUPPORTED - OSS
(sQL)

Yes

Yes

No

SUPPORTED - OSS
(COSMOS DB) COMMENT

Yes

Yes

No

There are common search parameters that apply to all resources. These are listed below, along with their
support within the Azure API for FHIR:

COMMON SEARCH
PARAMETER

_lastUpdated

_tag

_type

_security

_profile

_has

_query

filter

_list

_text

_content

SUPPORTED - PAAS

Yes

Yes

Yes

Yes

Yes

Yes

Partial

No

No

No

No

No

Resource-specific parameters

SUPPORTED - OSS
(sQL)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

SUPPORTED - 0SS
(COSMOS DB) COMMENT

Yes

Yes

Yes

Yes

Yes

Yes If you created your
R4 database before
February 20, 2021,
you'll need to run a
reindex job to enable
_profile.

Partial Support for _has is in
MVP in the Azure
API for FHIR and the
OSS version backed
by Cosmos DB. More
details are included
under the chaining
section below.

No

No

No

No

No

With the Azure API for FHIR, we support almost all resource-specific search parameters defined by the FHIR

specification. The only search parameters we don't support are available in the links below:

https://www.hl7.org/fhir/search.html#all
https://www.hl7.org/fhir/searchparameter-registry.html

e STU3 Unsupported Search Parameters

® R4 Unsupported Search Parameters

You can also see the current support for search parameters in the FHIR Capability Statement with the following
request:

GET {{FHIR_URL}}/metadata

To see the search parameters in the capability statement, navigate to
CapabilityStatement.rest.resource.searchParam to see the search parameters for each resource and

CapabilityStatement.rest.searchParam to find the search parameters for all resources.

NOTE

The Azure API for FHIR does not automatically create or index any search parameters that are not defined by the FHIR

specification. However, we do provide support for you to to define your own search parameters.

Composite search parameters

Composite search allows you to search against value pairs. For example, if you were searching for a height
observation where the person was 60 inches, you would want to make sure that a single component of the
observation contained the code of height and the value of 60. You wouldn't want to get an observation where a
weight of 60 and height of 48 was stored, even though the observation would have entries that qualified for
value of 60 and code of height, just in different component sections.

With the Azure API for FHIR, we support the following search parameter type pairings:

o Reference, Token

o Token, Date

o Token, Number, Number
e Token, Quantity

e Token, String

e Token, Token

For more information, see the HL7 Composite Search Parameters.

NOTE

Composite search parameters do not support modifiers per the FHIR specification.

Modifiers & prefixes

Modifiers allow you to modify the search parameter. Below is an overview of all the FHIR modifiers and the
support in the Azure API for FHIR.

SUPPORTED - OSS

MODIFIERS SUPPORTED - PAAS SUPPORTED - 0SS (SQL) (COSMOS DB)
:missing Yes Yes Yes
:exact Yes Yes Yes

:contains Yes Yes Yes

https://github.com/microsoft/fhir-server/blob/main/src/Microsoft.Health.Fhir.Core/Data/Stu3/unsupported-search-parameters.json
https://github.com/microsoft/fhir-server/blob/main/src/Microsoft.Health.Fhir.Core/Data/R4/unsupported-search-parameters.json
https://www.hl7.org/fhir/capabilitystatement.html
https://www.hl7.org/fhir/search.html#composite
https://www.hl7.org/fhir/search.html#modifiers

MODIFIERS

‘text

‘type (reference)

:not

:below (uri)

:above (uri)

;in (token)

:below (token)

:above (token)

:not-in (token)

SUPPORTED - PAAS

Yes

Yes

Yes

Yes

Yes

No

No

No

No

SUPPORTED - OSS (SQl)

Yes

Yes

Yes

Yes

Yes

No

No

No

No

SUPPORTED - OSS
(COSMOS DB)

Yes

Yes

Yes

Yes

Yes

No

No

No

No

For search parameters that have a specific order (hnumbers, dates, and quantities), you can use a prefix on the

parameter to help with finding matches. The Azure API for FHIR supports all prefixes.

Search result parameters

To help manage the returned resources, there are search result parameters that you can use in your search. For

details on how to use each of the search result parameters, refer to the HL7 website.

SEARCH RESULT
PARAMETERS

_elements

_count

_include

_revinclude

SUPPORTED - PAAS

Yes

Yes

Yes

Yes

SUPPORTED - OSS
(sQL)

Yes

Yes

Yes

Yes

SUPPORTED - 0SS
(COSMOS DB)

Yes

Yes

Yes

Yes

COMMENTS

_count is limited to
1000 resources. If it's
set higher than 1000,
only 1000 will be
returned and a
warning will be
returned in the
bundle.

Included items are
limited to 100.
_include on PaaS and
OSS on Cosmos DB
do not include
siterate support
(#1313).

Included items are
limited to 100.
_revinclude on PaaS
and OSS on Cosmos
DB do not include
siterate support
(#1313). Issue #1319

https://www.hl7.org/fhir/search.html#prefix
https://www.hl7.org/fhir/search.html#return
https://github.com/microsoft/fhir-server/issues/1313
https://github.com/microsoft/fhir-server/issues/1313
https://github.com/microsoft/fhir-server/issues/1319

SEARCH RESULT SUPPORTED - OSS SUPPORTED - OSS

PARAMETERS SUPPORTED - PAAS (sQL) (COSMOS DB) COMMENTS
_summary Yes Yes Yes
_total Partial Partial Partial _total=none and

_total=accurate

_sort Partial Partial Partial sort=_lastUpdated is
supported. For Azure
API for FHIR and OSS
Cosmos DB
databases created
after April 20, 2021
sort is also
supported on first
name, last name, and
clinical date.

_contained No No No
_containedType No No No
_score No No No

By default, the Azure API for FHIR is set to lenient handling. This means that the server will ignore any unknown
or unsupported parameters. If you want to use strict handling, you can use the Prefer header and set

handling=strict .

Chained & reverse chained searching

A chained search allows you to search using a search parameter on a resource referenced by another resource.
For example, if you want to find encounters where the patient’s name is Jane, use:

GET {{FHIR_URL}}/Encounter?subject:Patient.name=Jane

Similarly, you can do a reverse chained search. This allows you to get resources where you specify criteria on
other resources that refer to them. For more examples of chained and reverse chained search, refer to the FHIR

search examples page.

NOTE

In the Azure API for FHIR and the open source backed by Cosmos DB, there's a limitation where each subquery required
for the chained and reverse chained searches will only return 100 items. If there are more than 100 items found, you'll
receive the following error message: “Subqueries in a chained expression can't return more than 100 results, please use a

more selective criteria” To get a successful query, you'll need to be more specific in what you are looking for.

Pagination

As mentioned above, the results from a search will be a paged bundle. By default, the search will return 10

results per page, but this can be increased (or decreased) by specifying _count . Within the bundle, there will be
a self link that contains the current result of the search. If there are additional matches, the bundle will contain a
next link. You can continue to use the next link to get the subsequent pages of results. _count is limited to 1000

items or less.

Currently, the Azure API for FHIR only supports the next link in bundles, and it doesn’t support first, last, or

https://www.hl7.org/fhir/search.html#chaining

previous links.

Next steps

Now that you've learned about the basics of search, see the search samples page for details about how to search
using different search parameters, modifiers, and other FHIR search scenarios.

FHIR search examples

Defining custom search parameters

5/25/2021 < 5 minutes to read = Edit Online

The FHIR specification defines a set of search parameters for all resources and search parameters that are
specific to a resource(s). However, there are scenarios where you might want to search against an elementin a
resource that isn't defined by the FHIR specification as a standard search parameter. This article describes how
you can define your own search parameters to be used in the Azure API for FHIR.

NOTE

Each time you create, update, or delete a search parameter you'll need to run a reindex job to enable the search

parameter to be used in production. Below we will outline how you can test search parameters before reindexing the
entire FHIR server.

Create new search parameter

To create a new search parameter, you posT the searchParameter resource to the database. The code example
below shows how to add the US Core Race SearchParameter to the patient resource.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/how-to-do-custom-search.md
https://www.hl7.org/fhir/searchparameter.html
http://hl7.org/fhir/us/core/STU3.1.1/SearchParameter-us-core-race.html

POST {{FHIR_URL}}/SearchParameter

"resourceType" : "SearchParameter",
"id" : "us-core-race",
"url" : "http://hl7.org/fhir/us/core/SearchParameter/us-core-race",
"version" : "3.1.1",
"name" : "USCoreRace",
"status" : "active",
"date" : "2019-05-21",
"publisher" : "US Realm Steering Committee",
"contact" : [
{
"telecom" : [
{
"system" : "other",
"value" : "http://www.healthit.gov/"

}
1,
"description" : "Returns patients with a race extension matching the specified code.",
"jurisdiction" : [
{
"coding" : [
{
"system” : "urn:iso:std:iso:3166",
"code" : "US",
"display" : "United States of America”

}
])
"code" : "race",
"base" : [
"Patient"
])
"type" : "token",
"expression" : "Patient.extension.where(url = 'http://hl7.org/fhir/us/core/StructureDefinition/us-core-
race').extension.value.code"

3

NOTE

The new search parameter will appear in the capability statement of the FHIR server after you POST the search parameter
to the database and reindex your database. Viewing the SearchParameter in the capability statement is the only way
tell if a search parameter is supported in your FHIR server. If you can find the search parameter by searching for the
search parameter but cannot see it in the capability statement, you still need to index the search parameter. You can POST

multiple search parameters before triggering a reindex operation.

Important elements of a searchParameter :

e url: A unique key to describe the search parameter. Many organizations, such as HL7, use a standard URL
format for the search parameters that they define, as shown above in the US Core race search parameter.

e code: The value stored in code is what you'll use when searching. For the example above, you would
search with GET {FHIR_URL}/Patient?race=<code> to get all patients of a specific race. The code must be
unique for the resource(s) the search parameter applies to.

e base: Describes which resource(s) the search parameter applies to. If the search parameter applies to all
resources, you can use Resource ; otherwise, you can list all the relevant resources.

e type: Describes the data type for the search parameter. Type is limited by the support for the Azure API
for FHIR. This means that you cannot define a search parameter of type Special or define a composite
search parameter unless it is a supported combination.

e expression: Describes how to calculate the value for the search. When describing a search parameter,
you must include the expression, even though it is not required by the specification. This is because you
need either the expression or the xpath syntax and the Azure API for FHIR ignores the xpath syntax.

Test search parameters

While you cannot use the search parameters in production until you run a reindex job, there are a few ways to

test your search parameters before reindexing the entire database.

First, you can test your new search parameter to see what values will be returned. By running the command
below against a specific resource instance (by inputting their ID), you'll get back a list of value pairs with the
search parameter name and the value stored for the specific patient. This will include all of the search
parameters for the resource and you can scroll through to find the search parameter you created. Running this
command will not change any behavior in your FHIR server.

GET https://{{FHIR_URL}}/{{RESOURCE}}/{{RESOUCE_ID}}/$reindex

For example, to find all search parameters for a patient:

GET https://{{FHIR_URL}}/Patient/{{PATIENT_ID}}/$reindex

The result will look like this:

{
"resourceType": "Parameters",
"id": "8be24e78-b333-49da-a861-523491c3437a",
"meta": {
"versionId": "1"
})
"parameter": [

{

"name": "deceased",
"valueString": "http://hl7.org/fhir/special-values|false"

}J
{

"name": "language",

"valueString": "urn:ietf:bcp:47|en-US"
s
{

"name": "race",
"valueString": "2028-9"
})

Once you see that your search parameter is displaying as expected, you can reindex a single resource to test
searching with the element. First you will reindex a single resource:

POST https://{{FHIR_URL}/{{RESOURCE}}/{{RESOURCE_ID}}/$reindex

Running this, sets the indices for any search parameters for the specific resource that you defined for that

resource type. This does make an update to the FHIR server. Now you can search and set the use partial indices
header to true, which means that it will return results where any of the resources has the search parameter
indexed, even if not all resources of that type have it indexed.

Continuing with our example above, you could index one patient to enable the US Core Race Searchparameter :
POST https://{{FHIR_URL}/Patient/{{PATIENT_ID}}/$reindex
And then search for patients that have a specific race:

GET https://{{FHIR_URL}}/Patient?race=2028-9
X-ms-use-partial-indices: true

After you have tested and are satisfied that your search parameter is working as expected, run or schedule your
reindex job so the search parameters can be used in the FHIR server for production use cases.

Update a search parameter

To update a search parameter, use PUT to create a new version of the search parameter. You must include the
SearchParameter ID inthe id element of the body of the putT requestandin the put call.

NOTE

If you don't know the ID for your search parameter, you can search for it. Using GET {{FHIR_URL}}/SearchParameter
will return all custom search parameters, and you can scroll through the search parameter to find the search parameter
you need. You could also limit the search by name. With the example below, you could search for name using

USCoreRace: GET {{FHIR_URL}}/SearchParameter?name=USCoreRace

PUT {{FHIR_ULR}}/SearchParameter/{SearchParameter ID}

"resourceType" : "SearchParameter",
"id" : "SearchParameter ID",
"url" : "http://hl7.org/fhir/us/core/SearchParameter/us-core-race",
"version" : "3.1.1",
"name" : "USCoreRace",
"status" : "active",
"date" : "2019-05-21",
"publisher" : "US Realm Steering Committee",
"contact" : [
{
"telecom" : [
{
"system" : "other",
"value" : "http://www.healthit.gov/"

}
])
"description" : "New Description!",
"jurisdiction" : [
{
"coding" : [
{
"system” : "urn:iso:std:iso:3166",
"code" : "US",

"display" : "United States of America”

}
1

"code" : "race",
"base" : [
"Patient"
])
"type" : "token",
"expression" : "Patient.extension.where(url = 'http://hl7.org/fhir/us/core/StructureDefinition/us-core-
race').extension.value.code"

}

The result will be an updated searchparameter and the version will increment.

WARNING
Be careful when updating SearchParameters that have already been indexed in your database. Changing an existing
SearchParameter’s behavior could have impacts on the expected behavior. We recommend running a reindex job

immediately.

Delete a search parameter

If you need to delete a search parameter, use the following:

Delete {{FHIR_URL}}/SearchParameter/{SearchParameter ID}

WARNING

Be careful when deleting SearchParameters that have already been indexed in your database. Changing an existing

SearchParameter’s behavior could have impacts on the expected behavior. We recommend running a reindex job
immediately.

Next steps

In this article, you've learned how to create a search parameter. Next you can learn how to reindex your FHIR
server.

How to run a reindex job

Running a reindex job

5/25/2021 < 4 minutes to read = Edit Online

There are scenarios where you may have search or sort parameters in the Azure API for FHIR that haven't yet
been indexed. This is particularly relevant when you define your own search parameters. Until the search
parameter is indexed, it can't be used in search. This article covers an overview of how to run a reindex job to
index any search or sort parameters that have not yet been indexed in your database.

WARNING

It's important that you read this entire article before getting started. A reindex job can be very performance intensive.
This article includes options for how to throttle and control the reindex job.

How to run a reindex job

To start a reindex job, use the following code example:

POST {{FHIR URL}}/$reindex

{

“resourceType”: “Parameters”,
“parameter”: []

}

If the request is successful, a status of 201 Created gets returned. The result of this message will look like:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/how-to-run-a-reindex.md

HTTP/1.1 201 Created
Content-Location: https://{{FHIR URL}}/_operations/reindex/560c7c61-2c70-4c54-b86d-c53a9d29495e

"resourceType": "Parameters",
"id": "560c7c61-2c70-4c54-b86d-c53a9d29495e",
"meta": {
"versionId": "\"4c0049cd-0000-0100-0000-607dc5a90000\""
s
"parameter": [
{
"name": "id",
"valueString": "560c7c61-2c70-4c54-b86d-c53a9d29495e"

"name": "queuedTime",
"valueDateTime": "2021-04-19T18:02:17.0118558+00:00"

"name": "totalResourcesToReindex",
"valueDecimal”: 0.0

"name": "resourcesSuccessfullyReindexed",
"valueDecimal”: 0.0

"name": "progress",
"valueDecimal”: 0.0

"name": "status",
"valueString": "Queued"

"name": "maximumConcurrency",
"valueDecimal”: 1.0

"name": "resources",

"valueString":

"name": "searchParams",

"valueString":

NOTE

To check the status of or to cancel a reindex job, you'll need the reindex ID. This is the ID of the resulting Parameters

resource. In the example above, the ID for the reindex job would be 560c7c61-2c70-4c54-b86d-c53a9d29495e .

How to check the status of a reindex job

Once you've started a reindex job, you can check the status of the job using the following:
GET {{FHIR URL}}/_operations/reindex/{{reindexJobId}

The status of the reindex job result is shown below:

"resourceType"”: "Parameters”,
"id": "b65fd841-1c62-47c6-898f-c9016ced8f77",
"meta": {

"versionId": "\"1800f05f-0000-0100-0000-607ala7c0000\""
3

"parameter": [

"name": "id",
"valueString": "b65fd841-1c62-47c6-898f-c9016ced8f77"

"name": "startTime",
"valueDateTime": "2021-04-16T23:11:35.4223217+00:00"

"name": "queuedTime",
"valueDateTime": "2021-04-16T723:11:29.0288163+00:00"

"name": "totalResourcesToReindex",
"valueDecimal": 262544.0

"name": "resourcesSuccessfullyReindexed",
"valueDecimal": 5754.0

"name": "progress",
"valueDecimal”: 2.0

"name": "status",
"valueString": "Running"

"name": "maximumConcurrency",
"valueDecimal”: 1.0

"name": "resources",
"valueString":
"{LIST OF IMPACTED RESOURCES}"

The following information is shown in the reindex job result:

e totalResourcesToReindex: Includes the total number of resources that are being reindexed as part of
the job.

e resourcesSuccessfullyReindexed: The total that have already been successfully reindexed.

e progress: Reindex job percent complete. Equals

resourcesSuccessfullyReindexed/totalResourcesToReindex x 100.

e status: This will state if the reindex job is queued, running, complete, failed, or canceled.

e resources: This lists all the resource types impacted by the reindex job.

Delete a reindex job

If you need to cancel a reindex job, use a delete call and specify the reindex job ID:

Delete {{FHIR URL}}/_operations/reindex/{{reindexJobId}

Performance considerations

A reindex job can be quite performance intensive. We've implemented some throttling controls to help you

manage how a reindex job will run on your database.

NOTE

It is not uncommon on large datasets for a reindex job to run for days. For a database with 30,000,000 million resources,
we noticed that it took 4-5 days at 100K RUs to reindex the entire database.

Below is a table outlining the available parameters, defaults, and recommended ranges. You can use these

parameters to either speed up the process (use more compute) or slow down the process (use less compute).

For example, you could run the reindex job on a low traffic time and increase your compute to get it done

quicker. Instead, you could use the settings to ensure a very low usage of compute and have it run for days in

the background.

PARAMETER

QueryDelayIntervallnMillise
conds

MaximumResourcesPerQuer
y

MaximumConcurreny

targetDataStoreUsagePerce
ntrage

DESCRIPTION

This is the delay between
each batch of resources
being kicked off during the
reindex job.

This is the maximum
number of resources
included in the batch of
resources to be reindexed.

This is the number of
batches done at a time.

This allows you to specify
what percent of your data
store to use for the reindex
job. For example, you could
specify 50% and that would
ensure that at most the
reindex job would use 50%
of available RUs on Cosmos
DB.

DEFAULT

500 MS (.5 seconds)

100

No present, which means
that up to 100% can be
used.

RECOMMENDED RANGE

50 to 5000: 50 will speed
up the reindex job and
5000 will slow it down from
the default.

1-500

1-5

1-100

If you want to use any of the parameters above, you can pass them into the Parameters resource when you start

the reindex job.

"resourceType": "Parameters",
"parameter": [

"name": "maximumConcurrency",
"valueInteger": "3"

"name": "targetDataStoreUsagePercentage”,
"valueInteger": "20"

"name": "queryDelayIntervalInMilliseconds",
"valueInteger": "1000"

"name": "maximumNumberOfResourcesPerQuery",
"valueInteger": "1"

Next steps

In this article, you've learned how to start a reindex job. To learn how to define new search parameters that
require the reindex job, see

Defining custom search parameters

FHIR search examples

5/25/2021 « 7 minutes to read » Edit Online

Below are some examples of using FHIR search operations, including search parameters and modifiers, chain
and reverse chain search, composite search, viewing the next entry set for search results, and searching with a

POST request. For more information about search, see Overview of FHIR Search.

Search result parameters

_include

_include searches across resources for the ones that include the specified parameter of the resource. For
example, you can search across MedicationRequest resources to find only the ones that include information
about the prescriptions for a specific patient, which is the reference parameter patient .In the example below,
this will pull all the MedicationRequests and all patients that are referenced from the MedicationRequests :

GET [your-fhir-server]/MedicationRequest?_include=MedicationRequest:patient

NOTE

_include and _revinclude is limited to 100 items.

_revinclude

_revinclude allows you to search the opposite direction as _include . For example, you can search for patients
and then reverse include all encounters that reference the patients:

GET [your-fhir-server]/Patient?_revinclude=Encounter:subject

_elements

_elements narrows down the search result to a subset of fields to reduce the response size by omitting
unnecessary data. The parameter accepts a comma-separated list of base elements:

GET [your-fhir-server]/Patient?_elements=identifier,active

In this request, you'll get back a bundle of patients, but each resource will only include the identifier(s) and the
patient's active status. Resources in this returned response will contain a meta.tag value of SUBSETTED to
indicate that they're an incomplete set of results.

Search modifiers

:not
:not allows you to find resources where an attribute is not true. For example, you could search for patients
where the gender is not female:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/search-samples.md

GET [your-fhir-server]/Patient?gender:not=female

As a return value, you would get all patient entries where the gender is not female, including empty values
(entries specified without gender). This is different than searching for Patients where gender is male, since that
would not include the entries without a specific gender.

:missing

:missing returns all resources that don't have a value for the specified element when the value is true , and
returns all the resources that contain the specified element when the value is false . For simple data type
elements, :missing=true will match on all resources where the element is present with extensions but has an
empty value. For example, if you want to find all patient resources that are missing information on birth date,

you can do:

GET [your-fhir-server]/Patient?birthdate:missing=true

:exact

:exact is used for string parameters, and returns results that match the parameter precisely, such as in casing
and character concatenating.

GET [your-fhir-server]/Patient?name:exact=Jon

This request returns patient resources that have the name exactly the same as Jon . If the resource had
Patients with names such as Jonathan or jon , the search would ignore and skip the resource as it does not
exactly match the specified value.

:contains

:contains is used for string parameters and searches for resources with partial matches of the specified
value anywhere in the string within the field being searched. contains is case insensitive and allows character

concatenating. For example:

GET [your-fhir-server]/Patient?address:contains=Meadow

This request would return you all patient resources with address fields that have values that contain the
string "Meadow". This means you could have addresses that include values such as "Meadowers" or "59
Meadow ST" returned as search results.

Chained search

To perform a series of search operations that cover multiple reference parameters, you can "chain" the series of
reference parameters by appending them to the server request one by one using a period . .For example, if
you want to view all DiagnosticReport resources with a subject referencetoa patient resource thatincludes

a particular name :

GET [your-fhir-server]/DiagnosticReport?subject:Patient.name=Sarah

This request would return all the resources with the patient subject named "Sarah". The period . after the field
patient performs the chained search on the reference parameter of the subject parameter.

Another common use of a regular search (not a chained search) is finding all encounters for a specific patient.
patient s will often have one or more Encounter s with a subject. To search for all Encounter resources for a

patient with the provided id :

GET [your-fhir-server]/Encounter?subject=Patient/78al4cbe-8968-49fd-a231-d43e6619399f

Using chained search, you can find all the Encounter resources that matches a particular piece of Patient

information, such as the birthdate :

GET [your-fhir-server]/Encounter?subject:Patient.birthdate=1987-02-20

This would allow not just searching Encounter resources for a single patient, but across all patients that have
the specified birth date value.

In addition, chained search can be done more than once in one request by using the symbol & , which allows
you to search for multiple conditions in one request. In such cases, chained search "independently” searches for
each parameter, instead of searching for conditions that only satisfy all the conditions at once. It's an OR
operation, not an AND operation. For instance, if you want to get all patients who had a practitioner with a
certain name or from a particular state:

GET [your-fhir-server]/Patient?general-practitioner.name=Sarah&general-practitioner.address-state=WA

This would return all patient resources that have "Sarah" as the generalPractitioner ,and all Patient
resources that have generalPractitioner that have the address with the state WA. In other words, you can have
Sarah from the state NY and Bill from the state WA both as the returned results. Chained search doesn't require
meeting all conditions and is evaluated individually per the parameter.

For scenarios in which the search has to be an AND operation that covers all conditions as a group, refer to the
composite search example below.

Reverse chain search

Chain search lets you search for resources based on the properties of resources they refer to. Using reverse

chain search, allows you do it the other way around. You can search for resources based on the properties of
resources that refer to them, using _has parameter. For example, observation resource has a search parameter
patient referring to a Patient resource. To find all Patient resources that are referenced by observation with a

specific code :

GET [base]/Patient?_has:Observation:patient:code=527

This request returns Patient resources that are referred by observation with the code 527 .

In addition, reverse chain search can have a recursive structure. For example, if you want to search for all
patients that have observation where the observation has an audit event from a specific user janedoe , you
could do:

GET [base]/Patient?_has:Observation:patient:_has:AuditEvent:entity:user=janedoe

NOTE

In the Azure API for FHIR and the open-source FHIR server backed by Cosmos, the chained search and reverse chained
search is an MVP implementation. To accomplish chained search on Cosmos DB, the implementation walks down the
search expression and issues sub-queries to resolve the matched resources. This is done for each level of the expression. If
any query returns more than 100 results, an error will be thrown. By default, chained search is behind a feature flag. To

use the chained searching on Cosmos DB, use the header x-ms-enable-chained-search: true.

Composite search

To search for resources that meet multiple conditions at once, use composite search that joins a sequence of
single parameter values with a symbol $. The returned result would be the intersection of the resources that
match all of the conditions specified by the joined search parameters. Such search parameters are called
composite search parameters, and they define a new parameter that combines the multiple parameters in a
nested structure. For example, if you want to find all DiagnosticReport resources that contain observation with

a potassium value less than or equal to 9.2:

GET [your-fhir-server]/DiagnosticReport?result.code-value-quantity=2823-3$1t9.2

This request specifies the component containing a code of 2823-3 , which in this case would be potassium.
Following the $ symbol, it specifies the range of the value for the component using 1t for "less than or equal

to"and 9.2 for the potassium value range.

Search the next entry set

The maximum number of entries that can be returned per a single search query is 1000. However, you might
have more than 1000 entries that match the search query, and you might want to see the next set of entries
after the first 1000 entries that were returned. In such case, you would use the continuation token url valuein

searchset asinthe Bundle result below:

"resourceType": "Bundle",
"id": "98731cb7-3a39-46f3-8a72-afe945741bd9",
"meta": {
"lastUpdated": "2021-04-22T709:58:16.7823171+00:00"
})
"type": "searchset",
"link": [
{
"relation": "next",
"url": "[your-fhir-server]/Patient?_sort=_lastUpdated&ct=WzUxMDAxNzc1NzgzODc5MjAwODBd"
})
{
"relation": "self",
"url": "[your-fhir-server]/Patient?_sort=_lastUpdated"
}

])

And you would do a GET request for the provided URL under the field relation: next :

GET [your-fhir-server]/Patient?_sort=_lastUpdated&ct=WzUXxMDAxNzc1NzgzODc5MjAwODBd

This will return the next set of entries for your search result. The searchset is the complete set of search result
entries, and the continuation token url is the link provided by the server for you to retrieve the entries that
don't show up on the first set because the restriction on the maximum number of entries returned for a search
query.

Search using POST

All of the search examples mentioned above have used GeET requests. You can also do search operations using

POST requests using _search :

POST [your-fhir-server]/Patient/_search?_id=45

This request would return all patient resources with the id value of 45. Just as in GET requests, the server
determines which of the set of resources meets the condition(s), and returns a bundle resource in the HTTP
response.

Another example of searching using POST where the query parameters are submitted as a form body is:

POST [your-fhir-server]/Patient/_search
content-type: application/x-www-form-urlencoded

name=John

Next steps

Overview of FHIR Search

How to validate FHIR resources against profiles

5/25/2021 « 10 minutes to read « Edit Online

HL7 FHIR defines a standard and interoperable way to store and exchange healthcare data. Even within the base
FHIR specification, it can be helpful to define additional rules or extensions based on the context that FHIR is
being used. For such context-specific uses of FHIR, FHIR profiles are used for the extra layer of specifications.

FHIR profile describes additional context, such as constraints or extensions, on a resource represented as a
StructureDefinition . The HL7 FHIR standard defines a set of base resources, and these standard base resources
have generic definitions. FHIR profile allows you to narrow down and customize resource definitions using

constraints and extensions.

Azure API for FHIR allows validating resources against profiles to see if the resources conform to the profiles.
This article walks through the basics of FHIR profile, and how to use $validate for validating resources against

the profiles when creating and updating resources.

FHIR profile: the basics

A profile sets additional context on the resource, usually represented as a StructureDefinition resource.
StructureDefinition defines a set of rules on the content of a resource or a data type, such as what fields a
resource has and what values these fields can take. For example, profiles can restrict cardinality (e.g. setting the
maximum cardinality to O to rule out the element), restrict the contents of an element to a single fixed value, or
define required extensions for the resource. It can also specify additional constraints on an existing profile. A
StructureDefinition is identified by its canonical URL:

http://h17.org/fhir/StructurebDefinition/{profile}

Where in the {profile} field, you specify the name of the profile.
For example:

® http://hl7.org/fhir/StructureDefinition/patient-birthPlace is a base profile that requires information on
the registered address of birth of the patient.

® http://hl7.org/fhir/StructureDefinition/bmi is another base profile that defines how to represent Body
Mass Index (BMI) observations.

® http://hl7.org/fhir/us/core/StructureDefinition/us-core-allergyintolerance is a US Core proﬁlethatsets
minimum expectations for AllergyIntolerance resource associated with a patient, and identifies mandatory

fields such as extensions and value sets.

Base profile and custom profile

There are two types of profiles: base profile and custom profile. A base profile is a base Structurebefinition to
which a resource needs to conform to, and has been defined by base resources such as Patient or
Observation . For example, a Body Mass Index (BMI) observation profile would start like this:

{

"resourceType" : "StructureDefinition",
"id" : "bmi",

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/validation-against-profiles.md
https://www.hl7.org/fhir/profiling.html

A custom profile is a set of additional constraints on top of a base profile, restricting or adding resource
parameters that are not part of the base specification. Custom profile is useful because you can customize your
own resource definitions by specifying the constraints and extensions on the existing base resource. For
example, you might want to build a profile that shows AllergyIntolerance resource instances based on

patient genders, in which case you would create a custom profile on top of an existing Patient profile with

AllergyIntolerance profHe.

NOTE

Custom profiles must build on top of the base resource and cannot conflict with the base resource. For example, if an

element has a cardinality of 1..1, the custom profile cannot make it optional.

Custom profiles also specified by various Implementation Guides. Some common Implementation Guides are:

NAME URL

Us Core https://www.hl7.org/fhir/us/core/
CARIN Blue Button http://hl7.org/fhir/us/carin-bb/

Da Vinci Payer Data Exchange http://hl7.org/fhir/us/davinci-pdex/
Argonaut http://www.fhirorg/guides/argonaut/pd/

Accessing profiles and storing profiles

Storing profiles

For storing profiles to the server, you can do a PosT request:
POST http://<your FHIR service base URL>/{Resource}

In which the field {Resource} will be replaced by structurebefinition , and you would have your
StructureDefinition resource PosT ed to the serverin 3son or xmL format. For example, if you would like to

store us-core-allergyintolerance profile, you would do:

POST http://my-fhir-server.azurewebsites.net/StructureDefinition?
url=http://hl7.org/fhir/us/core/StructurebDefinition/us-core-allergyintolerance

Where the US Core Allergy Intolerance profile would be stored and retrieved:

https://www.hl7.org/fhir/us/core/
http://hl7.org/fhir/us/carin-bb/
http://hl7.org/fhir/us/davinci-pdex/
http://www.fhir.org/guides/argonaut/pd/

"resourceType" : "StructureDefinition",
"id" : "us-core-allergyintolerance",
"text" : {
"status" : "extensions"
})
"url" : "http://hl7.org/fhir/us/core/StructureDefinition/us-core-allergyintolerance",
"version" : "3.1.1",
"name" : "USCoreAllergyIntolerance",
"title" : "US Core AllergyIntolerance Profile",
"status" : "active",
"experimental” : false,
"date" : "2020-06-29",
"publisher" : "HL7 US Realm Steering Committee",
"contact" : [
{
"telecom" : [
{
"system” : "url",
"value" : "http://www.healthit.gov"

}
])

"description"” : "Defines constraints and extensions on the AllergyIntolerance resource for the minimal
set of data to query and retrieve allergy information.",

Most profiles have the resource type Structurebefinition , but they can also be of the types valueset and
CodeSystem , which are terminology resources. For example, if you PosT a valueset profile in a JSON form, the
server will return the stored profile with the assigned id for the profile, just as it would with
StructureDefinition . Below is an example you would get when you upload a Condition Severity profile, which

specifies the criteria for a condition/diagnosis severity grading:

http://hl7.org/fhir/terminologies.html
https://www.hl7.org/fhir/valueset-condition-severity.html

"resourceType": "ValueSet",
"id": "35ab90e5-c75d-45ca-aale-748fefaca7ee",

"meta": {
"versionId": "1",
"lastUpdated": "2021-05-07T21:34:28.781+00:00",
"profile": [
"http://h17.org/fhir/StructureDefinition/shareablevalueset”
1
})
"text": {
"status": "generated"
s
"extension": [
{
"url": "http://h1l7.org/fhir/StructureDefinition/structuredefinition-wg",
"valueCode": "pc"
}
1,

"url": "http://h1l7.org/fhir/ValueSet/condition-severity",
"identifier": [

{
"system": "urn:ietf:rfc:3986",
"value": "urn:0id:2.16.840.1.113883.4.642.3.168"
}
1,
"version": "4.0.1",
"name": "Condition/DiagnosisSeverity",
"title": "Condition/Diagnosis Severity",

"status": "draft",

"experimental”: false,

"date": "2019-11-01T709:29:23+11:00",
"publisher": "FHIR Project team",

You can see that the resourceType is a valueset ,andthe url for the profile also specifies that this is a type

ValueSet . "http://hl7.org/fhir/ValueSet/condition-severity"

Viewing profiles

You can access your existing custom profiles in the server using a GeT request. All valid profiles, such as the
profiles with valid canonical URLs in Implementation Guides, should be accessible by querying:

GET http://<your FHIR service base URL>/StructureDefinition?url={canonicalUrl}

Where the field {canonicalurl} would be replaced with the canonical URL of your profile.

For example, if you want to view US Core Goal resource profile:

GET http://my-fhir-server.azurewebsites.net/StructureDefinition?
url=http://h17.0org/fhir/us/core/StructureDefinition/us-core-goal

This will return the structurebefinition resource for US Core Goal profile, that will start like this:

"resourceType" : "StructureDefinition",

"id" : "us-core-goal”,

"url" : "http://hl7.org/fhir/us/core/StructurebDefinition/us-core-goal”,
"version" : "3.1.1",

"name" : "USCoreGoalProfile",

"title" : "US Core Goal Profile",

"status" : "active",

"experimental” : false,

"date" : "2020-07-21",

"publisher" : "HL7 US Realm Steering Committee",
"contact" : [

{

"telecom" : [

{
"system" : "url",
"value" : "http://www.healthit.gov"

}
1,
"description" : "Defines constraints and extensions on the Goal resource for the minimal set of data to
query and retrieve a patient's goal(s).",

Our FHIR server does not return structurebefinition instances for the base profiles, but they can be found
easily on the HL7 website, such as:

® http://hl7.org/fhir/Observation.profile.json.html

® http://hl7.org/fhir/Patient.profile.json.html

Profiles in the capability statement

The capability Statement lists all possible behaviors of your FHIR server to be used as a statement of the
server functionality, such as Structure Definitions and Value Sets. Azure API for FHIR updates the capability
statement with information on the uploaded and stored profiles in the forms of:

® CapabilityStatement.rest.resource.profile

® CapabilityStatement.rest.resource.supportedProfile

These will show all of the specification for the profile that describes the overall support for the resource,
including any constraints on cardinality, bindings, extensions, or other restrictions. Therefore, when you PposT a
profile in the form of a structurebefinition ,and GET the resource metadata to see the full capability

statement, you will see next to the supportedprofiles parameter all the details on the profile you uploaded.

For example, if you posT a US Core Patient profile, which starts like this:

{
"resourceType": "StructureDefinition",
"id": "us-core-patient”,
"url": "http://h1l7.org/fhir/us/core/StructureDefinition/us-core-patient”,
"version": "3.1.1",
"name": "USCorePatientProfile"”,
"title": "US Core Patient Profile",
"status": "active",

"experimental”: false,
"date": "2020-06-27",
"publisher": "HL7 US Realm Steering Committee",

And send a GET request for your metadata :

GET http://<your FHIR service base URL>/metadata

You will be returned with a capabilityStatement thatincludes the following information on the US Core Patient

profile you uploaded to your FHIR server:

"type": "Patient",

"profile": "http://hl7.org/fhir/StructureDefinition/Patient”,

"supportedProfile": [
"http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient™"

1,

Validating resources against the profiles

FHIR resources, such as Patient Or oObservation , can express their conformance to specific profiles. This allows
our FHIR server to validate given resources against the associated profiles or the specified profiles. Validating a
resource against profiles means checking if your resource conforms to the profiles, including the specifications
listed in Resource.meta.profile or in an Implementation Guide.

There are two ways for you to validate your resource. First, you can use $validate oOperation againsta resource
that is already in the FHIR server. Second, you can posT it to the server as part of a resource update or Create
operation. In both cases, you can decide via your FHIR server configuration what to do when the resource does

not conform to your desired profile.

Using $validate

The $validate operation checks whether the provided profile is valid, and whether the resource conforms to
the specified profile. As mentioned in the HL7 FHIR specifications, you can also specify the mode for $validate ,

such as create and update :

® create : The server checks that the profile content is unique from the existing resources and that it is
acceptable to be created as a new resource
® update : checks that the profile is an update against the nominated existing resource (e.g. that no changes are

made to the immutable fields)

The server will always return an operationoutcome as the validation results.

Validating an existing resource

To validate an existing resource, use $validate ina GET request:
GET http://<your FHIR service base URL>/{resource}/{resource ID}/$validate
For example:
GET http://my-fhir-server.azurewebsites.net/Patient/a6el1662-def8-4dde-9ebc-4429e68d130e/$validate

In the example above, you would be validating the existing Patient resource

a6e11662-def8-4dde-9ebc-4429e68d13ee . If it is valid, you will get an operationoutcome such as the following:

https://www.hl7.org/fhir/resource-operation-validate.html

"resourceType": "OperationOutcome",

"issue": [
"severity": "information",
"code": "informational",

"diagnostics": "All OK"

If the resource is not valid, you will get an error code and an error message with details on why the resource is
invalid. A 4xx or sxx error means that the validation itself could not be performed, and it is unknown whether

the resource is valid or not. An example operationoutcome returned with error messages could look like the

following:
{
"resourceType": "OperationOutcome",
"issue": [
{
"severity": "error",
"code": "invalid",
"details": {
"coding": [
{
"system": "http://hl7.org/fhir/dotnet-api-operation-outcome",
"code": "1028"
}
]J
"text": "Instance count for 'Patient.identifier.value' is @, which is not within the
specified cardinality of 1..1"
s
"location": [
"Patient.identifier[1]"
1
s
{
"severity": "error",
"code": "invalid",
"details": {
"coding": [
{
"system": "http://hl7.org/fhir/dotnet-api-operation-outcome",
"code": "1028"
}
1,
"text": "Instance count for 'Patient.gender' is @, which is not within the specified
cardinality of 1..1"
})
"location": [
"Patient"
1
}
1
}

In this example above, the resource did not conform to the provided Ppatient profile which required a patient
identifier value and gender.

If you would like to specify a profile as a parameter, you can specify the canonical URL for the profile to validate
against, such as the following example with US Core Patient profile and a base profile for heartrate :

GET http://<your FHIR service base URL>/{Resource}/{Resource ID}/$validate?profile={canonicalurl}

For example:

GET http://my-fhir-server.azurewebsites.net/Patient/a6el1662-def8-4dde-9ebc-4429e68d130e/$validate?
profile=http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient

GET http://my-fhir-server.azurewebsites.net/Observation/12345678/$validate?
profile=http://hl7.org/fhir/StructureDefinition/heartrate

Validating a new resource

If you would like to validate a new resource that you are uploading to the server, you can doa pPosT request:

POST http://<your FHIR service base URL>/{Resource}/$validate

For example:

POST http://my-fhir-server.azurewebsites.net/Patient/$validate

This request will create the new resource you are specifying in the request payload, whether itis in a JSON or
XML format, and validate the uploaded resource. Then, it will return an operationoutcome as a result of the
validation on the new resource.

Validate on resource CREATE or resource UPDATE

You can choose when you would like to validate your resource, such as on resource CREATE or UPDATE. You can
specify this in the server configuration setting, under the coreFeatures :

{
"FhirServer": {

"CoreFeatures": {
"ProfilevValidationOnCreate": true,
"ProfileValidationOnUpdate": false

}
}

If the resource conforms to the provided Resource.meta.profile and the profile is present in the system, the
server will act accordingly to the configuration setting above. If the provided profile is not present in the server,
the validation request will be ignored and left in Resource.meta.profile . Validation is usually an expensive
operation, so it is usually run only on test servers or on a small subset of resources - which is why it is
important to have these ways to turn the validation operation on or off validation on the server side. If the
server configuration specifies to opt out of validation on resource Create/Update, user can override the behavior
by specifying it in the header of the Create/Update request:

Xx-ms-profile-validation: true

Next steps

In this article, you have learned about FHIR profiles, and how to validate resources against profiles using
$validate. To learn about Azure API for FHIR's other supported features, check out:

FHIR supported features

How to export FHIR data

5/25/2021 « 6 minutes to read = Edit Online

The Bulk Export feature allows data to be exported from the FHIR Server per the FHIR specification.

Before using $export, you'll want to make sure that the Azure API for FHIR is configured to use it. For
configuring export settings and creating Azure storage account, refer to the configure export data page.

Using $export command

After configuring the Azure API for FHIR for export, you can use the $export command to export the data out of
the service. The data will be stored into the storage account you specified while configuring export. To learn how
to invoke $export command in FHIR server, read documentation on the HL7 FHIR $export specification.

Jobs stuck in a bad state

In some situations, there is a potential for a job to be stuck in a bad state. This can occur especially if the storage
account permissions have not been setup properly. One way to validate if your export is successful is to check
your storage account to see if the corresponding container (that is, ndjson) files are present. If they are not
present, and there are no other export jobs running, then there is a possibility the current job is stuck in a bad
state. You should cancel the export job by sending a cancellation request and try re-queuing the job again. Our
default run time for an export in bad state is 10 minutes before it will stop and move to a new job or retry the
export.

The Azure API For FHIR supports $export at the following levels:

[] System: GET https://<<FHIR service base URL>>/$export>>
® Patient: GET https://<<FHIR service base URL>>/Patient/$export>>

e Group of patients* - Azure API for FHIR exports all related resources but doesn't export the characteristics of

the group: GET https://<<FHIR service base URL>>/Group/[ID]/$export>>

When data is exported, a separate file is created for each resource type. To ensure that the exported files don't
become too large. We create a new file after the size of a single exported file becomes larger than 64 MB. The
result is that you may get multiple files for each resource type, which will be enumerated (that is, Patient-
1.ndjson, Patient-2.ndjson).

NOTE

Patient/$export and Group/[ID]/$export may export duplicate resources if the resource is in a compartment of

more than one resource, or is in multiple groups.

In addition, checking the export status through the URL returned by the location header during the queuing is
supported along with canceling the actual export job.

Exporting FHIR data to ADLS Gen2
Currently we support $export for ADLS Gen2 enabled storage accounts, with the following limitation:
e User cannot take advantage of hierarchical namespaces, yet there isn't a way to target export to a specific

subdirectory within the container. We only provide the ability to target a specific container (where we create
a new folder for each export).

e Once an export is complete, we never export anything to that folder again, since subsequent exports to the

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/export-data.md
https://hl7.org/fhir/uv/bulkdata/export/index.html
https://hl7.org/Fhir/uv/bulkdata/export/index.html
https://hl7.org/Fhir/uv/bulkdata/export/index.html#endpoint---system-level-export
https://hl7.org/Fhir/uv/bulkdata/export/index.html#endpoint---all-patients
https://hl7.org/Fhir/uv/bulkdata/export/index.html#endpoint---group-of-patients
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-namespace

same container will be inside a newly created folder.

Settings and parameters

Headers

There are two required header parameters that must be set for $export jobs. The values are defined by the

current $export specification.

e Accept - application/fhir+json

e Prefer - respond-async

Query parameters

The Azure API for FHIR supports the following query parameters. All of these parameters are optional:

QUERY PARAMETER

_outputFormat

_since

_type

_typefilter

_container

DEFINED BY THE FHIR SPEC?

Yes

Yes

Yes

Yes

No

DESCRIPTION

Currently supports three values to
align to the FHIR Spec:
application/fhir+ndjson,
application/ndjson, or just ndjson. All
export jobs will return ndjson and
the passed value has no effect on code
behavior.

Allows you to only export resources
that have been modified since the time
provided

Allows you to specify which types of
resources will be included. For example,
_type=Patient would return only
patient resources

To request finer-grained filtering, you
can use _typefilter along with the _type
parameter. The value of the _typeFilter
parameter is a comma-separated list of
FHIR queries that further restrict the
results

Specifies the container within the
configured storage account where the
data should be exported. If a container
is specified, the data will be exported
into a folder into that container. If the
container is not specified, the data will
be exported to a new container.

NOTE

destination for $export operations.

Only storage accounts in the same subscription as that for Azure API for FHIR are allowed to be registered as the

Secure Export to Azure Storage

Azure API for FHIR supports a secure export operation. Choose one of the two options below:

https://hl7.org/Fhir/uv/bulkdata/export/index.html#headers

o Allowing Azure API for FHIR as a Microsoft Trusted Service to access the Azure storage account.

e Allowing specific IP addresses associated with Azure API for FHIR to access the Azure storage account.

This option provides two different configurations depending on whether the storage account is in the

same location as, or is in a different location from that of the Azure API for FHIR.

Allowing Azure API for FHIR as a Microsoft Trusted Service

Select a storage account from the Azure portal, and then select the Networking blade. Select Selected

networks under the Firewalls and virtual networks tab.

IMPORTANT

For more details, see Configure export setting and set up the storage account.

Ensure that you've granted access permission to the storage account for Azure API for FHIR using its managed identity.

P Search (Ctrl+/) «

®

Geo-replication

CORS

[]

Configuration

=]

Encryption

@

Shared access signature

‘8 Networking

O Security
Static website

Properties

B Locks

Blob service

= Containers

B Custom domain

@ Data protection

& Object replication
@ Azure CDN

Add Azure Search

G Lifecycle Management
File service

4 File shares

Firewalls and virtual networks Private endpoint connections

save X Discard () Refresh

@ Firewall settings allowing access to storage services will remain in effect for up to a minute after saving updated settings restricting access.

Allow access from

O Al networks |(® selected networks

@ Configure network security for your storage accounts. Learn more
Virtual networks
—+ Add existing virtual network = Add new virtual network
Virtual Network Subnet

Address range

No network selected.

Firewall

Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
() Add your client IP address (Pxo)

Address range

[1P address or CIDR |

Resource instances

Endpoint Status

Specify resource instances that will have access to your storage account based on their system-assigned managed identity.

Resource type Instance name

Select a resource type V| Select one or more instances

Resource Group Subscription

Under the Exceptions section, select the box Allow trusted Microsoft services to access this storage

account and save the setting.

Dashboard > myfhirservice123 > rg-my-fhir-service > myfhirservice123sa

@ myfhirservice123sa | Networking

Storage account

[}) Search (Ctrl+/)

& File shares
M Queues

ER Tables

Security + networking

& Networking

4 Azure CDN

Access keys
@ Shared access signature
ﬂ Encryption

0 Security

Data management

@ Geo-replication

e Data protection

& Object replication

& Blob inventory (preview)

& Static website

Firewall

Add IP ranges to allow access from the internet or your on-premises networks. Learn more.

D Add your client IP address ('73.164.17.31) ©

Address range

[1P address or CIDR

Resource instances

Specify resource instances that will have access to your storage account based on their system-assigned managed identity.

Resource type

I Select a resource type | Selecton:

Exceptions
Allow trusted Microsoft services to access this storage account ©

D Allow read access to storage logging from any netwerk

[Allow read access to storage metrics from any network

Network Routing

Instance name

€ or more instances

Determine how you would like to route your traffic as it travels from its source to an Azure endpoint. Microsoft routing is recommended for most customers.

Routing preference * ®
@ Microsoft network routing O Internet routing

Publish route-specific endpoints ©
D Microsoft netwerk routing
D Internet routing

You're now ready to export FHIR data to the storage account securely. Note that the storage account is on

selected networks and is not publicly accessible. To access the files, you can either enable and use private

https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/configure-export-data
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/export-data/storage-networking.png#lightbox

endpoints for the storage account, or enable all networks for the storage account for a short period of time.

IMPORTANT

The user interface will be updated later to allow you to select the Resource type for Azure API for FHIR and a specific

service instance.

Allowing specific IP addresses for the Azure storage account in a different region

Select Networking of the Azure storage account from the portal.

Select Selected networks. Under the Firewall section, specify the IP address in the Address range box. Add IP
ranges to allow access from the internet or your on-premises networks. You can find the IP address in the table
below for the Azure region where the Azure API for FHIR service is provisioned.

AZURE REGION

Australia East

Canada Central

Central US

East US

East US 2

East US 2 EUAP

Germany North

Germany West Central

Japan East

Korea Central

North Central US

North Europe

South Africa North

South Central US

Southeast Asia

Switzerland North

UK South

UK West

West Central US

PUBLIC IP ADDRESS

20.53.44.80

20.48.192.84

52.182.208.31

20.62.128.148

20.49.102.228

20.39.26.254

51.116.51.33

51.116.146.216

20.191.160.26

20.41.69.51

20.49.114.188

52.146.131.52

102.133.220.197

13.73.254.220

23.98.108.42

51.107.60.95

51.104.30.170

51.137.164.94

52.150.156.44

AZURE REGION PUBLIC IP ADDRESS

West Europe 20.61.98.66
West US 2 40.64.135.77
NOTE

The above steps are similar to the configuration steps described in the document How to convert data to FHIR (Preview).
For more information, see Host and use templates

Allowing specific IP addresses for the Azure storage account in the same region

The configuration process is the same as above except a specific IP address range in CIDR format is used
instead, 100.64.0.0/10. The reason why the IP address range, which includes 100.64.0.0 — 100.127.255.255, must
be specified is because the actual IP address used by the service varies, but will be within the range, for each
$export request.

NOTE

It is possible that a private IP address within the range of 10.0.2.0/24 may be used instead. In that case, the $export
operation will not succeed. You can retry the $export request, but there is no guarantee that an IP address within the
range of 100.64.0.0/10 will be used next time. That's the known networking behavior by design. The alternative is to
configure the storage account in a different region.

Next steps

In this article, you've learned how to export FHIR resources using $export command. Next, to learn how to
export de-identified data, see:

Export de-identified data

https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/convert-data#host-and-use-templates

Exporting de-identified data (preview)

6/8/2021 « 2 minutes to read » Edit Online

NOTE

regulatory, or compliance requirements.

Results when using the de-identified export will vary based on factors such as data inputted, and functions selected by
the customer. Microsoft is unable to evaluate the de-identified export outputs or determine the acceptability for

customer's use cases and compliance needs. The de-identified export is not guaranteed to meet any specific legal,

The $export command can also be used to export de-identified data from the FHIR server. It uses the
anonymization engine from FHIR tools for anonymization, and takes anonymization config details in query
parameters. You can create your own anonymization config file or use the sample config file for HIPAA Safe

Harbor method as a starting point.

https://<<FHIR service base URL>>/$export?_container=<<container_name>>& anonymizationConfig=<<config file

name>>&_ anonymizationConfigEtag=<<ETag on storage>>

NOTE

Right now the Azure API for FHIR only supports de-identified export at the system level ($export).

QUERY PARAMETER EXAMPLE OPTIONALITY

_anonymizationConfig DemoConfig.json Required for de-identified
export

_anonymizationConfigEtag "0x8D8494A069489EC" Optional for de-identified
export

DESCRIPTION

Name of the configuration
file. See the configuration
file format here. This file
should be kept inside a
container named
anonymization within the
same Azure storage
account that is configured
as the export location.

This is the Etag of the
configuration file. You can
get the Etag using Azure
Storage Explorer from the
blob property

IMPORTANT

Both raw export as well as de-identified export writes to the same Azure storage account specified as part of export

configuration. It is recommended that you use different containers corresponding to different de-identified config and

manage user access at the container level.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/de-identified-export.md
https://github.com/microsoft/FHIR-Tools-for-Anonymization
https://github.com/microsoft/FHIR-Tools-for-Anonymization#sample-configuration-file-for-hipaa-safe-harbor-method
https://github.com/microsoft/FHIR-Tools-for-Anonymization#configuration-file-format

Moving data from Azure API for FHIR to Azure

Synapse Analytics

5/25/2021 « 9 minutes to read « Edit Online

In this article you will learn a couple of ways to move data from Azure API for FHIR to Azure Synapse Analytics,
which is a limitless analytics service that brings together data integration, enterprise data warehousing, and big
data analytics.

Moving data from the FHIR server to Synapse involves exporting the data using the FHIR g$export operation
followed by a series of steps to transform and load the data to Synapse. This article will walk you through two of
the several approaches, both of which will show how to convert FHIR resources into tabular formats while
moving them into Synapse.

e |oad exported data to Synapse using T-SQL: Use $export operation to move FHIR resources into a
Azure Data Lake Gen 2 (ADL Gen 2) blob storage in npison format. Load the data from the storage
into serverless or dedicated SQL pools in Synapse using T-SQL. Convert these steps into a robust data
movement pipeline using Synapse pipelines.

e Use the tools from the FHIR Analytics Pipelines OSS repo: The FHIR Analytics Pipeline repo contains
tools that can create an Azure Data Factory (ADF) pipeline to move FHIR data into a Common Data
Model (CDM) folder, and from the CDM folder to Synapse.

Load exported data to Synapse using T-SQL

$export for moving FHIR data into Azure Data Lake Gen 2 storage

—
— Sexport—p S —TSQL—p
Azure Azure Azure
API for FHIR Storage Synapse Analytics

Configure your FHIR server to support $export

Azure API for FHIR implements the $export operation defined by the FHIR specification to export all or a
filtered subset of FHIR data in np3son format. In addition, it supports de-identified export to anonymize FHIR
data during the export. If you use $export , you get de-identification feature by default its capability is already
integrated in $export .

To export FHIR data to Azure blob storage, you first need to configure your FHIR server to export data to the
storage account. You will need to (1) enable Managed Identity, (2) go to Access Control in the storage account
and add role assignment, (3) select your storage account for $export . More step-by-step can be found here.

You can configure the server to export the data to any kind of Azure storage account, but we recommend
exporting to ADL Gen 2 for best alignment with Synapse.

Using s$export command

After configuring your FHIR server, you can follow the documentation to export your FHIR resources at System,
Patient, or Group level. For example, you can export all of your FHIR data related to the patients ina Group with

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/move-to-synapse.md
https://azure.microsoft.com/services/synapse-analytics/
https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-pipelines
https://github.com/microsoft/FHIR-Analytics-Pipelines

the following $export command, in which you specify your ADL Gen 2 blob storage name in the field

{{BlobContainer}} :
https://{{FHIR service base URL}}/Group/{{GroupId}}/$export? container={{BlobContainer}}

You can also use _type parameter inthe s$export call above to restrict the resources we you want to export.

For example, the following call will export only Patient , MedicationRequest ,and Observation resources:

https://{{FHIR service base URL}}/Group/{{GroupId}}/$export?_container={{BlobContainer}}&
_type=Patient,MedicationRequest,Condition

For more information on the different parameters supported, check out our $export page section on the query

parameters.

Create a Synapse workspace

Before using Synapse, you will need a Synapse workspace. You will create a Azure Synapse Analytics service on
Azure portal. More step-by-step guide can be found here. You need an ADLSGEN2 account to create a workspace.
Your Azure Synapse workspace will use this storage account to store your Synapse workspace data.

After creating a workspace, you can view your workspace on Synapse Studio by signing into your workspace on
https://web.azuresynapse.net, or launching Synapse Studio in the Azure portal.

Creating a linked service between Azure storage and Synapse

To move your data to Synapse, you need to create a linked service that connects your Azure Storage account
with Synapse. More step-by-step can be found here.

1. On Synapse Studio, navigate to the Manage tab, and under External connections, select Linked services.
2. Select New to add a new linked service.

3. Select Azure Data Lake Storage Gen2 from the list and select Continue.

4

. Enter your authentication credentials. Select Create when finished.

Now that you have a linked service between your ADL Gen 2 storage and Synapse, you are ready to use
Synapse SQL pools to load and analyze your FHIR data.

Decide between serverless and dedicated SQL pool

Azure Synapse Analytics offers two different SQL pools, serverless SQL pool and dedicated SQL pool. Serverless
SQL pool gives the flexibility of querying data directly in the blob storage using the serverless SQL endpoint
without any resource provisioning. Dedicated SQL pool has the processing power for high performance and
concurrency, and is recommended for enterprise-scale data warehousing capabilities. For more details on the
two SQL pools, check out the Synapse documentation page on SQL architecture.

Using serverless SQL pool
Since it is serverless, there's no infrastructure to setup or clusters to maintain. You can start querying data from
Synapse Studio as soon as the workspace is created.

For example, the following query can be used to transform selected fields from Patient.ndjson into a tabular
structure:

https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace
https://web.azuresynapse.net
https://docs.microsoft.com/en-us/azure/synapse-analytics/data-integration/data-integration-sql-pool
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/overview-architecture

SELECT * FROM

OPENROWSET (bulk "https://{{youraccount}}.blob.core.windows.net/{{yourcontainer}}/Patient.ndjson"’,

FORMAT = ‘csv',

FIELDTERMINATOR ='@x®0b',

FIELDQUOTE = '@xeb")

WITH (doc NVARCHAR(MAX)) AS rows

CROSS APPLY OPENJSON(doc)

WITH (
Resourceld VARCHAR(64) '$.id',
Active VARCHAR(10) '$.active’,
FullName VARCHAR(100) '$.name[@].text',
Gender VARCHAR(20) '$.gender',

In the query above, the opPENROWSET function accesses files in Azure Storage, and openison parses JSON text and
returns the JSON input properties as rows and columns. Every time this query is executed, the serverless SQL
pool reads the file from the blob storage, parses the JSON, and extracts the fields.

You can also materialize the results in Parquet format in an External Table to get better query performance, as

shown below:

-- Create External data source where the parquet file will be written
CREATE EXTERNAL DATA SOURCE [MyDataSource] WITH (
LOCATION = 'https://{{youraccount}}.blob.core.windows.net/{{exttblcontainer}}’
)s
GO

-- Create External File Format
CREATE EXTERNAL FILE FORMAT [ParquetFF] WITH (
FORMAT_TYPE = PARQUET,
DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'
)s
GO

CREATE EXTERNAL TABLE [dbo].[Patient] WITH (
LOCATION = 'PatientParquet/',
DATA_SOURCE = [MyDataSource],
FILE_FORMAT = [ParquetFF]
) AS
SELECT * FROM
OPENROWSET (bulk "https://{{youraccount}}.blob.core.windows.net/{{yourcontainer}}/Patient.ndjson’
-- Use rest of the SQL statement from the previous example --

Using dedicated SQL pool

Dedicated SQL pool supports managed tables and a hierarchical cache for in-memory performance. You can
import big data with simple T-SQL queries, and then use the power of the distributed query engine to run high-
performance analytics.

The simplest and fastest way to load data from your storage to a dedicated SQL pool is to use the copy
command in T-SQL, which can read CSV, Parquet, and ORC files. As in the example query below, use the copy

command to load the NDISoN rows into a tabular structure.

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-external-tables

-- Create table with HEAP, which is not indexed and does not have a column width limitation of
NVARCHAR (4000)

CREATE TABLE StagingPatient (

Resource NVARCHAR(MAX)

) WITH (HEAP)

COPY INTO StagingPatient

FROM "https://{{yourblobaccount}}.blob.core.windows.net/{{yourcontainer}}/Patient.ndjson’
WITH (

FILE_TYPE = 'CSV',

ROWTERMINATOR="'0x0a",

FIELDQUOTE = '',

FIELDTERMINATOR = '©x00'

)
GO

Once you have the JSON rows in the stagingPatient table above, you can create different tabular formats of
the data using the openason function and storing the results into tables. Here is a sample SQL query to create a

Patient table by extracting a few fields from the Patient resource:

SELECT RES.*
INTO Patient
FROM StagingPatient
CROSS APPLY OPENJSON(Resource)
WITH (
ResourceId VARCHAR(64) '$.id',
FullName VARCHAR(100) '$.name[@].text',
FamilyName VARCHAR(50) '$.name[0].family"’,
GivenName VARCHAR(50) '$.name[0@].given[0]',
Gender VARCHAR(20) '$.gender',
DOB DATETIME2 '$.birthDate’,
MaritalStatus VARCHAR(20) '$.maritalStatus.coding[@].display’,
LanguageOfCommunication VARCHAR(20) '$.communication[@].language.text’
) AS RES
GO

Use FHIR Analytics Pipelines OSS tools

,i,

ADF Pipeline CDM folder Azure Synapse
Analytics

NOTE
FHIR Analytics pipeline is an open source tool released under MIT license, and is not covered by the Microsoft SLA for

Azure services.

ADF pipeline for moving FHIR data into CDM folder

https://github.com/microsoft/FHIR-Analytics-Pipelines

Common Data Model (CDM) folder is a folder in a data lake that conforms to well-defined and standardized
metadata structures and self-describing data. These folders facilitate metadata interoperability between data
producers and data consumers. Before you move FHIR data into CDM folder, you can transform your data into a
table configuration.

Generating table configuration

Clone te repo get all the scripts and source code. Use npm install to install the dependencies. Run the following
command from the configuration-Generator folder to generate a table configuration folder using YAML format

instructions:

Configuration-Generator> node .\generate_from_yaml.js -r {resource configuration file} -p {properties group
file} -o {output folder}

You may use the sample vamL files, resourcesconfig.yml and propertiesGroupConfig.yml provided in the repo.

Generating ADF pipeline

Now you can use the content of the generated table configuration and a few other configurations to generate an
ADF pipeline. This ADF pipeline, when triggered, exports the data from the FHIR server using $export APl and
writes to a CDM folder along with associated CDM metadata.

1. Create an Azure Active Directory (AD) application and service principal. The ADF pipeline uses an Azure batch
service to do the transformation, and needs an Azure AD application for the batch service. Follow Azure AD
documentation.

2. Grant access for export storage location to the service principal. In the Access control of the export storage,
grant Storage Blob Data Contributor role to the Azure AD application.

3. Deploy the egress pipeline. Use the template fhirserviceTocdm.json for a custom deployment on Azure. This
step will create the following Azure resources:

e An ADF pipeline with the name {pipelinename}-df .

e Akey vault with the name {pipelinename}-kv to store the client secret.

e A batch account with the name {pipelinename}batch to run the transformation.
e A storage account with the name {pipelinename}storage .

4. Grant access to the Azure Data Factory. In the access control panel of your FHIR service, grant

FHIR data exporter and FHIR data reader roles to the data factory, {pipelinename}-df .
5. Upload the content of the table configuration folder to the configuration container.

6. Goto {pipelinename}-df , and trigger the pipeline. You should see the exported data in the CDM folder on the

storage account {pipelinename}storage . You should see one folder for each table having a CSV file.

From CDM folder to Synapse

Once you have the data exported in a CDM format and stored in your ADL Gen 2 storage, you can now move
your data in the CDM folder to Synapse.

You can create CDM to Synapse pipeline using a configuration file, which would look something like this:

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

"ResourceGroup":
"TemplateFilePath": "../Templates/cdmToSynapse.json",
"TemplateParameters": {

"DataFactoryName": ""
"SynapseWorkspace":
"DedicatedSqlPool™: "",

"AdlsAccountForCdm": "",

"CdmRootLocation": "cdm",

"StagingContainer": "adfstaging",

"Entities": ["LocalPatient"”, "LocalPatientAddress"]

nn
1)

Run this script with the configuration file above:
.\DeployCdmToSynapsePipeline.psl -Config: config.json

Add ADF Managed Identity as a SQL user into SQL database. Here is a sample SQL script to create a user and an
assign role:

CREATE USER [datafactory-name] FROM EXTERNAL PROVIDER
GO

EXEC sp_addrolemember db_owner, [datafactory-name]

GO

Next steps

In this article, you learned two different ways to move your FHIR data into Synapse: (1) using $export to move
data into ADL Gen 2 blob storage then loading the data into Synapse SQL pools, and (2) using ADF pipeline for
moving FHIR data into CDM folder then into Synapse.

Next, you can learn about anonymization of your FHIR data while moving data to Synapse to ensure your
healthcare information is protected:

Exporting de-identified data

How to convert data to FHIR (Preview)

5/17/2021 < 4 minutes to read = Edit Online

IMPORTANT

This capability is in public preview, and it's provided without a service level agreement. It's not recommended for
production workloads. Certain features might not be supported or might have constrained capabilities. For more

information, see Supplemental Terms of Use for Microsoft Azure Previews.

The $convert-data custom endpoint in the Azure API for FHIR is meant for data conversion from different
formats to FHIR. It uses the Liquid template engine and the templates from the FHIR Converter project as the
default templates. You can customize these conversion templates as needed. Currently it supports HL7v2 to

FHIR conversion.

Use the $convert-data endpoint

https://<<FHIR service base URL>>/$convert-data

$convert-data takes a Parameter resource in the request body as described below:

Parameter Resource:

PARAMETER NAME

inputData

inputDataType

templateCollectionReference

rootTemplate

DESCRIPTION

Data to be converted.

Data type of input.

Reference to a template collection. It
can be a reference either to the
Default templates, or a custom
template image that's registered with
Azure API for FHIR. See below to learn
about customizing the templates,
hosting those on ACR, and registering
to the Azure API for FHIR.

The root template to use while
transforming the data.

ACCEPTED VALUES

A valid value of JSON String datatype

HL7v2

microsofthealth/fhirconverter:default

<RegistryServer>/<imageName> @<i
mageDigest>

ADT_A@1 , OML_021 , ORU_Re1 ,
VXU_Vo4

WARNING

calls as described later.

Default templates help you get started quickly. However, these may get updated when we upgrade the Azure API for
FHIR. In order to have consistent data conversion behavior across different versions of Azure API for FHIR, you must host
your own copy of templates on an Azure Container Registry, register those to the Azure API for FHIR, and use in your API

Sample request:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/convert-data.md
https://azure.microsoft.com/support/legal/preview-supplemental-terms/
https://github.com/microsoft/FHIR-Converter
http://hl7.org/fhir/parameters.html

"resourceType": "Parameters",
"parameter": [
{
"name": "inputData",
"valueString":

"MSH | ~~\\&| SIMHOSP | SFAC | RAPP | RFAC | 20200508131015 | | ADT~A@1|517|T|2.3| | |AL| |44 | ASCII\nEVN|A0@1|20200508131015] |
| ce@5~Whittingham~Sylviar A DrA~ADRNBRAPRSNLAA*ORGDR | \nPID|1|3735064194""*SIMULATOR
MRN~MRN | 3735064194~ "~STMULATOR

MRN~MRN~2021051528~"*NHSNBR"NHSNMBR | | Kinmonth~Joanna”Chelsea”*Ms~~CURRENT| | 19870624000000 |F| | |89 Transaction

House“Handmaiden Street”“Wembley~AFV75 4GJAGBRAHOME||020 3614 5541~HOME|||]||]|]|||C White -
otherA~~| |||]]|\nPD1]|||FAMILY PRACTICE~712345|\nPV1|1|I|OtherWard~MainRoom~Bed 183~Simulated
Hospital”~~BED”"Main
Building”~4|28b| | |C@@5~Whittingham”Sylvia~~ADrAAADRNBRAPRSNLAMORGDR| | |[CAR| | |||]]]]16094728916771313876~~ vi
sitid|[[ITIITITEETITIETTTT I TARRIVED] | | 20260508131015] | "
})
{
"name": "inputDataType",
"valueString": "H17v2"
})
{
"name": "templateCollectionReference",
"valueString": "microsofthealth/fhirconverter:default”
s
{
"name": "rootTemplate",
"valueString": "ADT_A01"
}

Sample response:

"resourceType": "Bundle",
"type": "transaction",
"entry": [
{
"fullUrl": "urn:uuid:9d697ec3-48c3-3el7-db6a-29al1765e22c6",

"resource": {
"resourceType": "Patient",
"id": "9d697ec3-48c3-3el7-db6a-29al1765e22c6",

"request": {
"method": "PUT",
"url": "Location/5@becdb5-ff56-56c6-40al-6d554dcagdefe"

Customize templates

You can use the FHIR Converter extension for Visual Studio Code to customize the templates as per your needs.
The extension provides an interactive editing experience, and makes it easy to download Microsoft-published
templates and sample data. Refer to the documentation in the extension for more details.

Host and use templates

It's strongly recommended that you host your own copy of templates on ACR. There're four steps involved in
hosting your own copy of templates and using those in the $convert-data operation:

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-health-fhir-converter

1. Push the templates to your Azure Container Registry.

Enable Managed Identity on your Azure API for FHIR instance.
Provide access of the ACR to the Azure API for FHIR Managed Identity.
Register the ACR servers in the Azure API for FHIR.

vk W

Optionally configure ACR firewall for secure access.

Push templates to Azure Container Registry

After creating an ACR instance, you can use the FHIR Converter: Push Templates command in the FHIR
Converter extension to push the customized templates to the ACR. Alternatively, you can use the Template
Management CLI tool for this purpose.

Enable Managed Identity on Azure API for FHIR

Browse to your instance of Azure API for FHIR service in the Azure portal, and then select the Identity blade.
Change the status to On to enable managed identity in Azure API for FHIR.

fhir-docs - Identity

P Azure API for FHIR

‘ £ Search (Cmd+/) ‘ « System assigned

& Overview A system assigned managed identity enables Azure resources to authenticate to cloud services (e.g. Azure Key Vault) without
storing credentials in code. Once enabled, all necessary permissions can be granted via Azure role-based-access-control. The

Activity log lifecycle of this type of managed identity is tied to the lifecycle of this resource. Additionally, each resource (e.g. Virtual Machine)

can only have one system assigned managed identity. Learn more about Managed identities.
A5 Access control (IAM)

P Tags X Discard O Refresh Q Got feedback?
Settings
Status @
> Authentication
of QI
) CORS
Object ID ©
& Database | 1d330b79-cce-418d-8e2b-b7171cBbcfe? D]
& Integration
9 Role assignments ©
»ldentity Show the Azure RBAC roles assigned to this managed identity
ﬁ Locks
54 Export template o This resource is registered with Azure Active Directory. You can control its access to services like Azure Resource Manager, Azure
Key Vault, etc. Learn more
Monitoring

41 Metrics

@ Diagnostic settings

Provide access of the ACR to Azure API for FHIR

1. Browse to the Access control (IAM) blade.
2. Select Add, and then select Add role assignment to open the Add role assignment page.

3. Assign the AcrPull role.

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-health-fhir-converter
https://github.com/microsoft/FHIR-Converter/blob/main/docs/TemplateManagementCLI.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#acrpull

Add role assignment X

Role (D

| Select a role RV |

Assign access to (D

| | User, group, or service principal R |

Select @

| Search by name or email address |

. Admin

. Alain

. Alain Team
AT

Selected members:
Mo members selected. Search for and add one or more
members you want to assign to the role for this resource.

Learn more about RBAC

Save Discard

For more information about assigning roles in the Azure portal, see Azure built-in roles.
Register the ACR servers in Azure APl for FHIR
You can register the ACR server using the Azure portal, or using CLI.

Registering the ACR server using Azure portal

Browse to the Artifacts blade under Data transformation in your Azure API for FHIR instance. You will see the
list of currently registered ACR servers. Select Add, and then select your registry server from the drop-down
menu. You'll need to select Save for the registration to take effect. It may take a few minutes to apply the change

and restart your instance.

Registering the ACR server using CLI
You can register up to 20 ACR servers in the Azure API for FHIR.

Install the Healthcare APIs CLI from Azure PowerShell if needed:

az extension add -n healthcareapis

Register the acr servers to Azure API for FHIR following the examples below:

Register a single ACR server

az healthcareapis acr add --login-servers "fhiracr2021.azurecr.io" --resource-group fhir-test --resource-
name fhirtest2021

Register multiple ACR servers

https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

az healthcareapis acr add --login-servers "fhiracr2021.azurecr.io

fhir-test --resource-name fhirtest2021

Configure ACR firewall

Select Networking of the Azure storage account from the portal.

= Microsoft Azure (Preview)
Home > testkk

g testkk | Networking

Container registry

[P search (ctrl+/) | «

@ Overview i
Activity log

Aq Access control (IAM)

@ Tags

& Quick start

Events

Settings
Access keys
@ Encryption

Identity

4§ Networking |

@ Security

FaNNrI

fhiracr2020.azurecr.io"

O Search resources, services, and docs (G+/)

Public access Private endpoint

[5] save X Discard (O Refresh

Allow public network access: (O Allnetworks
(®) Selected networks
(O Disabled

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
] Add your client IP address (167.220.233.52) ©

Address range

20.62.128.148

[1P address or CIDR

Select Selected networks.

--resource-group

@microsoft.co... (&

MICROSOFT (MICROSOFT.ONMI... &

Under the Firewall section, specify the IP address in the Address range box. Add IP ranges to allow access

from the internet or your on-premises networks.

In the table below, you'll find the IP address for the Azure region where the Azure API for FHIR service is

provisioned.

AZURE REGION

Australia East

Canada Central

Central US

East US

East US 2

East US 2 EUAP

Germany North

Germany West Central

Japan East

Korea Central

PUBLIC IP A

20.53.44.80

20.48.192.8

52.182.208.

20.62.128.1

20.49.102.2

DDRESS

4

31

48

28

20.39.26.254

51.116.51.3

3

51.116.146.216

20.191.160.26

20.41.69.51

AZURE REGION PUBLIC IP ADDRESS

North Central US 20.49.114.188
North Europe 52.146.131.52
South Africa North 102.133.220.197
South Central US 13.73.254.220
Southeast Asia 23.98.108.42
Switzerland North 51.107.60.95
UK South 51.104.30.170
UK West 51.137.164.94
West Central US 52.150.156.44
West Europe 20.61.98.66
West US 2 40.64.135.77
NOTE

The above steps are similar to the configuration steps described in the document How to export FHIR data. For more
information, see Secure Export to Azure Storage

Verify

Make a call to the $convert-data API specifying your template reference in the templateCollectionReference
parameter.

<RegistryServer>/<imageName>@<imageDigest>

https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/export-data#secure-export-to-azure-storage

Patient-everything in FHIR

6/8/2021 « 2 minutes to read » Edit Online

The $patient-everything operation was created to provide a patient with access to their entire record or for a
provider or other user to perform a bulk data download. This operation is used to return all the information
related to one or more patients described in the resource or context on which this operation is invoked.

Use patient-everything

To call patient-everything, use the following command:

GET {FHIRURL}/Patient/{ID}/$everything

The Azure API for FHIR validates that it can find the patient matching the provided patient ID. If a result is found,
the response will be a bundle of type “searchset” with the following information:

e Patient resource
e Resources that are directly referenced by the Patient resource (except link)
e Resources in the Patient's compartment

e Device resources that reference the Patient resource. Note that this is limited to 100 devices. If the patient has
more than 100 devices linked to them, only 100 will be returned.

NOTE

$patient-everything is available in the Open Source FHIR Server backed by Cosmos DB now and will be available in Azure
API for FHIR before July 1st. The capability statement for the FHIR Server is missing support for $patient-everything,
which is tracked here: Issue 1989.

Patient-everything parameters

The Azure API for FHIR supports the following query parameters. All of these parameters are optional:

QUERY PARAMETER DESCRIPTION

_type Allows you to specify which types of resources will be
included in the response. For example, _type=Encounter
would return only Encounter resources associated with the
patient.

_since Will return only resources that have been modified since the
time provided.

start Specifying the start date will pull in resources where there
clinical date is after the specified start date. If no start date is
provided, all records prior to the end date are in scope.

end Specifying the end date will pull in resources where there
clinical date is before the specified end date. If no end date is
provided, all records after the start date are in scope.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/patient-everything.md
https://www.hl7.org/fhir/patient-operation-everything.html
https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/compartmentdefinition-patient.html
https://www.hl7.org/fhir/device.html
https://github.com/microsoft/fhir-server/issues/1989

NOTE

You must specify an ID for a specific patient. If you need all data for all patients, see $export.

Examples of $patient-everything
Below are some additional examples of using the $patient-everything operation.

To use $patient-everything to query a patient’s “everything” between 2010 and 2020, use the following call:
GET {FHIRURL}/Patient/{ID}/$everything?start=2010&end=2020

To use $patient-everything to query a patient's Observation and Encounter, use the following call:
GET {FHIRURL}/Patient/{ID}/$everything_type=Observation,Encounter

To use $patient-everything to query a patient’s “everything” since 2021-05-27T05:00:00Z, use the following call:
GET {FHIRURL}/Patient/{ID}/$everything?_ since=2021-05-27T05:00:00Z

If a Patient is found for each of these calls, you'll get back a 200 response with a Bundle of the corresponding

resources.

Next step

Now that you know how to use the patient-everything operation, you can learn about more search options on
the overview of search guide.

Overview of FHIR search

$member-match operation

6/8/2021 « 2 minutes to read » Edit Online

$member-match is an operation that is defined as part of the Da Vinci Health Record Exchange (HRex). In this

guide, we'll walk through what $member-match is and how to use it.

Overview of $member-match

The $member-match operation was created to help with the payer-to-payer data exchange, by allowing a new
payer to get a unique identifier for a patient from the patient’s previous payer. The $member-match operation
requires three pieces of information to be passed in the body of the request:

e Patient demographics
e The old coverage information
e The new coverage information (not required based on our implementation)

After the data is passed in, the Azure API for FHIR validates that it can find a patient that exactly matches the
demographics passed in with the old coverage information passed in. If a result is found, the response will be a
bundle with the original patient data plus a new identifier added in from the old payer, and the old coverage
information.

NOTE

The specification describes passing in and back the new coverage information. We've decided to omit that data to keep
the results smaller.

Example of $member-match

To use $member-match, use the following call:
POST {{fhirurl}}/Patient/$member-match

You'll need to include a parameters resource in the body that includes the patient, the old coverage, and the new

coverage. To see a JSON representation, see $member-match example request.

If a single match is found, you'll receive a 200 response with another identifier added:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-member-match.md
http://hl7.org/fhir/us/davinci-hrex/2020Sep/OperationDefinition-member-match.html
http://hl7.org/fhir/us/davinci-hrex/2020Sep/Parameters-member-match-in.json.html

"parameter": [
{
"name": "MemberPatient",
"resource": {
"resourceType": "Patient",
"id": "1",
"identifier™: [
{
"type": {
"coding": [
{
"system": "
"code": "MB"

|
|
"system": "
"value": "55678",
"assigner": {
"reference": "Organization/2"
}
|
{

"type": {
"coding": [
{
"system": "
"code": "UMB"
}

]l

"text": "Member Match"
}l
"system":
"value": "55678"

If the $member-match can't find a unique match, you'll receive a 422 response with an error code.

Next steps

In this guide, you've learned about the $member-match operation. Next, you can learn about testing the Da Vinci
Payer Data Exchange IG in Touchstone, which requires the $member-match operation.

DaVinci PDex

Find identity object IDs for authentication

configuration

3/11/2021 « 2 minutes to read = Edit Online

In this article, you'll learn how to find identity object IDs needed when configuring the Azure API for FHIR to use

an external or secondary Active Directory tenant for data plane.

Find user object ID

If you have a user with user name myuser@contoso.com , you can locate the users objectid using the following
PowerShell command:

$(Get-AzureADUser -Filter "UserPrincipalName eq 'myuser@contoso.com'").ObjectId
or you can use the Azure CLI:

az ad user show --id myuser@contoso.com --query objectId --out tsv

Find service principal object ID

Suppose you have registered a service client app and you would like to allow this service client to access the
Azure AP| for FHIR, you can find the object ID for the client service principal with the following PowerShell
command:

$(Get-AzureADServicePrincipal -Filter "AppId eqg 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'").0bjectId

where XXXXXXXX-XXXX - XXXX-XXXX-XXXXXXXXXXXX s the service client application ID. Alternatively, you can use the

DisplayName oOf the service client:
$(Get-AzureADServicePrincipal -Filter "DisplayName eq 'testapp'").ObjectId
If you are using the Azure CLI, you can use:

az ad sp show --id XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX --query objectId --out tsv

Find a security group object ID

If you would like to locate the object ID of a security group, you can use the following PowerShell command:
$(Get-AzureADGroup -Filter "DisplayName eq 'mygroup'").ObjectId

Where mygroup is the name of the group you are interested in.

If you are using the Azure CLI, you can use:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/find-identity-object-ids.md

az ad group show --group "mygroup" --query objectId --out tsv

Next steps

In this article, you've learned how to find identity object IDs needed to configure the Azure API for FHIR to use
an external or secondary Azure Active Directory tenant. Next read about how to use the object IDs to configure
local RBAC settings:

Configure local RBAC settings

Enable Diagnostic Logging in Azure API for FHIR

3/26/2021 « 3 minutes to read « Edit Online

In this article, you will learn how to enable diagnostic logging in Azure API for FHIR and be able to review some
sample queries for these logs. Access to diagnostic logs is essential for any healthcare service where compliance
with regulatory requirements (such as HIPAA) is a must. The feature in Azure API for FHIR that enables
diagnostic logs is the Diagnostic settings in the Azure portal.

View and Download FHIR Metrics Data

You can view the metrics under Monitoring | Metrics from the portal. The metrics include Number of Requests,
Average Latency, Number of Errors, Data Size, RUs Used, Number of requests that exceeded capacity, and
Availability (in %). The screenshot below shows RUs used for a sample environment with very few activities in
the last 7 days. You can download the data in Json format.

L Download as JSON
Overview Database Availability

Thour 24hours 7days Custom

Data Size s

s

Number of Requests >

smpane

875,67,

Enable audit logs

1. To enable diagnostic logging in Azure API for FHIR, select your Azure API for FHIR service in the Azure
portal

2. Navigate to Diagnostic settings

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/enable-diagnostic-logging.md
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/diagnostic-settings
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/diagnostic-logging/fhir-metrics-rus-screen.png#lightbox

(U VI IRV W 5 Report a bug P Search resources, services, and docs (G+/)

Home > caitlinfhird - Diagnostic settings

ir9 - Diagnostic settings

O Refresh

subscription * © Resource group Resource type O Resource ®

@ ovenview

[evvse | [eitinfirs < | [oselected v | [citintrirs

E Activity log
QVVSE >
. Access control (1AM)
® Taos Diagnostics settings
Name storage account Event hub Log analytic Edit setting
Settings
. No diagnostic settings defined
> Authentication
& CORS Add diagnostic setting
% Cosmos DB Click *Add Diagnostic setting above to configure the collection of the following data
A ook + Auditlogs
() todks + Errors
+ Traffic
& Export templat
Hporttempiste - availabilty
+ Saturation
Monitoring
4 Metrics
& Diagnostic settings
® Logs

Support + troubleshooting

B New supportrequest

3. Select + Add diagnostic setting
4. Enter a name for the setting
5. Select the method you want to use to access your diagnostic logs:

a. Archive to a storage account for auditing or manual inspection. The storage account you want to
use needs to be already created.

b. Stream to event hub for ingestion by a third-party service or custom analytic solution. You will need
to create an event hub namespace and event hub policy before you can configure this step.

c. Stream to the Log Analytics workspace in Azure Monitor. You will need to create your Logs
Analytics Workspace before you can select this option.

6. Select AuditLogs and/or AllMetrics. The metrics include service name, availability, data size, total
latency, total requests, total errors and timestamp. You can find more detail on supported metrics.

Diagnostic setting

Q Feedback

A diagnostic setting specifies a list of categories of platform logs and/or metrics that you want to collect from a resource, and one or more
destinations that you would stream them to. Normal usage charges for the destination will occur. Learn more about the different log
categories and contents of those logs

Diagnostic setting name *

Category details Destination details
log D Send to Log Analytics workspace
D Auditlogs E] Archive to a storage account
metric
E] Stream to an event hub
E] AllMetrics

7. Select Save

NOTE

It might take up to 15 minutes for the first Logs to show in Log Analytics. Also, if Azure API for FHIR is moved from one
resource group or subscription to another, update the setting once the move is complete.

For more information on how to work with diagnostic logs, please refer to the Azure Resource Log
documentation

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/diagnostic-logging/diagnostic-settings-screen.png#lightbox
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/diagnostic-logging/fhir-diagnostic-setting.png#lightbox
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/platform-logs-overview

Audit log details

At this time, the Azure API for FHIR service returns the following fields in the audit log:
FIELD NAME TYPE NOTES

Callerldentity Dynamic A generic property bag containing
identity information

Callerldentitylssuer String Issuer

CallerldentityObjectld String Object_Id

CallerlPAddress String The caller’s IP address
Correlationld String Correlation ID
FhirResourceType String The resource type for which the

operation was executed

LogCategory String The log category (we are currently
returning ‘AuditLogs’ LogCategory)

Location String The location of the server that
processed the request (e.g., South
Central US)

OperationDuration Int The time it took to complete this

request in seconds

OperationName String Describes the type of operation (e.g.
update, search-type)

RequestUri String The request URI

ResultType String The available values currently are
Started, Succeeded, or Failed

StatusCode Int The HTTP status code. (e.g., 200)
TimeGenerated DateTime Date and time of the event
Properties String Describes the properties of the

fhirResourceType

SourceSystem String Source System (always Azure in this
case)

Tenantld String Tenant ID

Type String Type of log (always
MicrosoftHealthcareApisAuditLog in
this case)

_Resourceld String Details about the resource

Sample queries

Here are a few basic Application Insights queries you can use to explore your log data.

Run this query to see the 100 most recent logs:

MicrosoftHealthcareApisAuditLogs
| limit 100

Run this query to group operations by FHIR Resource Type:

MicrosoftHealthcareApisAuditLogs
| summarize count() by FhirResourceType

Run this query to get all the failed results

MicrosoftHealthcareApisAuditLogs
| where ResultType == "Failed"

Conclusion

Having access to diagnostic logs is essential for monitoring a service and providing compliance reports. Azure
API for FHIR allows you to do these actions through diagnostic logs.

FHIR is the registered trademark of HL7 and is used with the permission of HL7.

Next steps

In this article, you learned how to enable Audit Logs for Azure API for FHIR. Next, learn about other additional

settings you can configure in the Azure API for FHIR

Additional Settings

Display and configure Azure loT Connector for

FHIR (preview) metrics

3/11/2021 « 2 minutes to read = Edit Online

In this article, you'll learn how to display and configure Azure loT Connector for Fast Healthcare Interoperability
Resources (FHIR®)* metrics.

TIP

To learn how to set up the export of metrics data, follow the guidance in Export Azure loT Connector for FHIR (preview)

metrics through diagnostics settings.

Display metrics for Azure loT Connector for FHIR (preview)

1. Sign in to the Azure portal, and then select your Azure APl for FHIR service.
2. On the left pane, select Metrics.

3. Selectthe loT Connector tab.

Home > iomt-validation

a iomt-validation | Metrics &
Wl e apiforFR

£ Search (Ctrl+/) « L Download as JSON
@ overview N

Overview Database Availability | loT Connector
Activity log
8o Access control (AM] connector-1 connector-2 connector-3 connector-4
€ Tags

o Thour 24hours 7days Custom

Settings

Number of Incoming Messages P
» Authentication
& CORS
_ s
@ Database
@ Integration

4
Identity

43 Networking (preview)

6 Locks

Add-ins

& 10T Connector (preview) s R 930 M uTC-on.00

Monitoring 225

Hamber of Nommotzed iesoges -
@ Diagnostic settings
@ Logs
Automation

i Tasks

§ Export template

Support + troubleshooting

R New support request

uTcor0

284

| Nurber of Normalized Messages (Sur)
tsidsion

4. Select an loT Connector to view its metrics. For example, there are four IoT Connectors (connector 1,
connector 2, and so on) associated with this Azure API for FHIR service.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-metrics-display.md
https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/iot-metrics-diagnostics-export
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-main.png#lightbox

Home > iomt-validation

Wl e w1 for PR

«
@ ovenview
Activity log
. Access control (1aM)
@ Tags
Settings
» Authentication
@ cors
@ Database
& Integration
Identity
4> Networking (preview)
B Locks
Add-ins

& 10T Connector (preview)

Monitoring
fifl Metrics

& Diagnostic settings
#® Logs

Automation

2 Tasks

E Export template
Support + trubleshooting

8 New support request

./ iomt-validation | Metrics &

' Download as JSON

Overview Database Availability loT Connector

connector-1 connector-2 connector-3 connector-4

Thour 24hours 7days Custom
Number of Incoming Messages 2
.
f
'
0
oAy o8 A 9304M utcano
Nt of coring Messages (Sum)
ot akision
225
Number of Normalized Messages »

urcore0

Nurvter o Normslized Meszages (Sur)
fomeaidston

284

5. Select the time period (for example, 1 hour, 24 hours, 7 days, or Custom) of the loT Connector metrics

you want to display. By selecting the Custom tab, you can create specific time/date combinations for

displaying loT Connector metrics.

Home > iomt-validation

Y pzire AP for FHIR

£ search (Ctrl+/) «

@ overview
Activity log
8 Access control (IAM)
€ Tags
Settings
» Authentication
@ cors
@ Database
@ Integration
Identity
43 Networking (preview)
A Locks
Add-ins
& 10T Connector (preview)
Monitoring
fifl Metrics
@ Diagnostic settings
@ Logs
Automation

2 Tasks
§ Export template

Support + troubleshooting

R New support request

a iomt-validation | Metrics &

L Download as JSON

Overview Database Availability loT Connector

connector-1 connector-2 connector-3 connector-4
Thour 24hours 7days Custom
Number of Incoming Messages ©
.
3
'
o
e a5 4 e304u Ut
Nt o coring Miessages Sum)
bt
utcano

Nurnber of Normalized Messages (sum)

284

Metric types for Azure loT Connector for FHIR (preview)

TIP

To learn about data flow in Azure loT Connector for FHIR, view Azure |oT Connector for FHIR (preview) data flow and
Azure loT Connector for FHIR (preview) troubleshooting guide to learn more about error messages and fixes.

The loT Connector metrics you can display are listed in the following table:

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-select-connector.png#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-select-time.png#lightbox

METRIC TYPE METRIC PURPOSE

Number of Incoming Messages Displays the number of received raw incoming messages (for
example, the device events).

Number of Normalized Messages Displays the number of normalized messages.

Number of Message Groups Displays the number of groups that have messages
aggregated in the designated time window.

Average Normalized Stage Latency Displays the average latency of the normalized stage. The
normalized stage performs normalization on raw incoming
messages.

Average Group Stage Latency Displays the average latency of the group stage. The group

stage performs buffering, aggregating, and grouping on
normalized messages.

Total Error Count Displays the total number of errors.

Focus on and configure Azure loT Connector for FHIR (preview)
metrics

In this example, let's focus on the Number of Incoming Messages metric.

1.

Select a point-in-time that you want to focus on.

Overview Database Availability loT Connector

connector-1 connector-2 connector-3 connector-4

Thour 24 hours 7days Custom

Number of Incoming Messages P

Ot 28 1:41 PM 2M Z15PM UTC-0T00
Number of Incoming Messages (sum)
fomt-uaiistion

5

. Onthe Number of Incoming Messages pane, you can further customize the metric by selecting Add

metric, Add filter, or Apply splitting.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-focus.png#lightbox

+ New chart () Refresn |2 Share \/ (2 Feedback v/ Local Time: Last hour (Automatic - 1 minute)

Number of Incoming Messages ¢

v Add metric *y Add filter ¥ Apply splitting |&% Line chart v [, Drill into Logs v [} New alertrule 5 Pin to dashboard .+«

v iomt-validation, Number of Incoming Me... Sum @ | (7 The resource nam... = co... @

s

urcor00

Conclusion

Having access to data plane metrics is essential for monitoring and troubleshooting. Azure loT Connector for
FHIR assists you with these actions through metrics.

Next steps

Get answers to frequently asked questions about Azure IoT Connector for FHIR.
Azure loT Connector for FHIR FAQ

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered
trademark of HL7 and is used with the permission of HL7.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-add-options.png#lightbox

Get access token for Azure API for FHIR using

Azure CLI

3/11/2021 « 2 minutes to read = Edit Online

In this article, you'll learn how to obtain an access token for the Azure API for FHIR using the Azure CLI. When
you provision the Azure API for FHIR, you configure a set of users or service principals that have access to the
service. If your user object ID is in the list of allowed object IDs, you can access the service using a token
obtained using the Azure CLI.

Prerequisites

e Use the Bash environment in Azure Cloud Shell.

K\ Launch Cloud Shell

AL

e [fyou prefer, install the Azure CLI to run CLI reference commands.

o If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish
the authentication process, follow the steps displayed in your terminal. For additional sign-in
options, see Sign in with the Azure CLI.

o When you're prompted, install Azure CLI extensions on first use. For more information about
extensions, see Use extensions with the Azure CLI.

o Run az version to find the version and dependent libraries that are installed. To upgrade to the
latest version, run az upgrade.

Obtain a token

The Azure API for FHIR uses a resource or Audience with URI equal to the URI of the FHIR server
https://<FHIR ACCOUNT NAME>.azurehealthcareapis.com . You can obtain a token and store it in a variable (named

$token) with the following command:

token=$(az account get-access-token --resource=https://<FHIR ACCOUNT NAME>.azurehealthcareapis.com --query
accessToken --output tsv)

Use with Azure API for FHIR

curl -X GET --header "Authorization: Bearer $token" https://<FHIR ACCOUNT
NAME>.azurehealthcareapis.com/Patient

Next steps

In this article, you've learned how to obtain an access token for the Azure API for FHIR using the Azure CLI. To
learn how to access the FHIR APl using Postman, proceed to the Postman tutorial.

Access FHIR APl using Postman

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/get-healthcare-apis-access-token-cli.md
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index#az_login
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/azure-cli-extensions-overview
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_version
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_upgrade

Azure |loT Connector for FHIR (preview)

troubleshooting guide

3/11/2021 « 9 minutes to read Edit Online

This article provides steps for troubleshooting common Azure loT Connector for Fast Healthcare Interoperability
Resources (FHIR®)* error messages and conditions.

You'll also learn how to create copies of the Azure loT Connector for FHIR conversion mappings JSON (for
example: Device and FHIR).

You can use the conversion mapping JSON copies for editing and archiving outside of the Azure portal.

TIP

If you'll be opening a Azure Technical Support ticket for the Azure IoT Connector for FHIR, make sure to include copies of
your conversion mapping JSON to help with the troubleshooting process.

Device and FHIR Conversion Mapping JSON Template Validations for
Azure IoT Connector for FHIR (preview)

In this section, you'll learn about the validation process that Azure IoT Connector for FHIR performs to validate
the Device and FHIR conversion mapping JSON templates before allowing them to be saved for use. These
elements are required in the Device and FHIR Conversion Mapping JSON.

Device Mapping

ELEMENT REQUIRED
TypeName True
TypeMatchExpression True
DeviceldExpression True
TimestampExpression True
Values[].ValueName True
Values[].ValueExpression True
NOTE

Values[].ValueName and Values[].ValueExpression

These elements are only required if you have a value entry in the array - it is valid to have no values mapped. This is used
when the telemetry being sent is an event. For example: When a wearable loMT device is put on or removed. The
element(s) do not have any values except for a name that Azure loT Connector for FHIR matches and emits. On the FHIR
conversion, Azure loT Connector for FHIR maps it to a code-able concept based on the semantic type - no actual values
are populated.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-troubleshoot-guide.md
https://azure.microsoft.com/support/create-ticket/

FHIR Mapping

ELEMENT REQUIRED
TypeName True
NOTE

This is the only required FHIR Mapping element validated at this time.

Error messages and fixes for Azure lIoT Connector for FHIR (preview)

MESSAGE

Invalid mapping name,
mapping name should be
device or FHIR.

Validation failed. Required
information is missing or
not valid.

Regenerate key parameters
not defined.

Reached the maximum
number of loT Connector
instances that can be
provisioned in this
subscription.

Move resource is not
supported for loT
Connector enabled Azure
API for FHIR resource.

loT Connector not
provisioned.

The request is not
supported.

DISPLAYED

API

API and Azure portal

API

API and Azure portal

APl and Azure portal

API

API

CONDITION

Mapping type supplied isn't
device or FHIR.

Attempting to save a
conversion mapping
missing needed information
or element.

Regenerate key request.

Azure loT Connector for
FHIR subscription quota
reached (Default is (2) per
subscription).

Attempting to do a move
operation on an Azure API
for FHIR resource that has
one or more instances of
the Azure loT Connector for
FHIR.

Attempting to use child
services (connections &
mappings) when parent
(Azure loT Connector for
FHIR) hasn't been
provisioned.

Specific API request isn't
supported.

FIX

Use one of the two
supported mapping types
(for example: Device or
FHIR).

Add missing conversion
mapping information or
element and attempt to
save the conversion
mapping again.

Include the parameters in
the regeneration key
request.

Delete one of the existing
instances of Azure loT
Connector for FHIR. Use a
different subscription that
hasn't reached the
subscription quota. Request
a subscription quota
increase.

Delete existing instance(s)
of Azure loT Connector for
FHIR to do the move
operation.

Provision an Azure loT
Connector for FHIR.

Use the correct API request.

MESSAGE DISPLAYED

Account does not exist. API

Azure API for FHIR resource API
FHIR version is not

supported for loT

Connector.

CONDITION FIX

Create the Azure API for
FHIR resource and then
reattempt the operation.

Attempting to add an Azure
loT Connector for FHIR and
the Azure API for FHIR
resource doesn't exist.

Create a new Azure API for
FHIR resource (version R4)

Attempting to use an Azure
loT Connector for FHIR with
an incompatible version of or use an existing Azure API
the Azure API for FHIR for FHIR resource (version
resource. R4).

Why is my Azure loT Connector for FHIR (preview) data not showing

up in Azure API for FHIR?

POTENTIAL ISSUES

Data is still being processed.

Device conversion mapping JSON hasn't been configured.
FHIR conversion mapping JSON has not been configured.

The device message doesn't contain an expected expression
defined in the device mapping.

A Device Resource hasn't been created in the Azure API for
FHIR (Resolution Type: Lookup only)*.

A Patient Resource has not been created in the Azure API for

FHIR (Resolution Type: Lookup only)*.

The Device.patient reference isn't set, or the reference is
invalid (Resolution Type: Lookup only)*.

FIXES

Data is egressed to the Azure API for FHIR in batches (every
~15 minutes). It's possible the data is still being processed
and additional time is needed for the data to be persisted in
the Azure API for FHIR.

Configure and save conforming device conversion mapping
JSON.

Configure and save conforming FHIR conversion mapping
JSON.

Verify JsonPath expressions defined in the device mapping
match tokens defined in the device message.

Create a valid Device Resource in the Azure API for FHIR. Be
sure the Device Resource contains an Identifier that matches
the device identifier provided in the incoming message.

Create a valid Patient Resource in the Azure API for FHIR.

Make sure the Device Resource contains a valid Reference to
a Patient Resource.

*Reference Quickstart: Deploy Azure loT Connector (preview) using Azure portal for a functional description of

the Azure loT Connector for FHIR resolution types (For example: Lookup or Create).

Use Metrics to troubleshoot issues in Azure loT Connector for FHIR

(preview)

Azure loT Connector for FHIR generates multiple metrics to provide insights into the data flow process. One of

the supported metrics is called 7otal Errors, which provides the count for all errors that occur within an instance

of Azure loT Connector for FHIR.

Each error gets logged with a number of associated properties. Every property provides a different aspect about

the error, which could help you to identify and troubleshoot issues. This section lists different properties

captured for each error in the 7otal Errors metric, and possible values for these properties.

https://www.hl7.org/fhir/device-definitions.html#Device.patient

NOTE

You can navigate to the 7otal Errors metric for an instance of Azure loT Connector for FHIR (preview) as described on the

Azure |loT Connector for FHIR (preview) Metrics page.

Click on the Total Errors graph and then click on Add filter button to slice and dice the error metric using any of
the properties mentioned below.

The operation performed by the Azure 10T Connector for FHIR (preview)

This property represents the operation being performed by loT Connector when the error has occurred. An
operation generally represents the data flow stage while processing a device message. Here is the list of
possible values for this property.

NOTE

You can read more about different stages of data flow in Azure 10T Connector for FHIR (preview) here.

DATA FLOW STAGE DESCRIPTION

Setup Operation specific to setting up your instance of loT
Connector

Normalization Data flow stage where device data gets normalized

Grouping Data flow stage where normalized data gets grouped

FHIRConversion Data flow stage where grouped-normalized data is

transformed into a FHIR resource

Unknown The operation type is unknown when error occurred

The severity of the error

This property represents the severity of the occurred error. Here is the list of possible values for this property.
SEVERITY DESCRIPTION

Warning Some minor issue exists in the data flow process, but
processing of the device message doesn't stop

Error Processing of a specific device message has run into an error
and other messages may continue to execute as expected

Critical Some system level issue exists with the loT Connector and
no messages are expected to process

The type of the error

This property signifies a category for a given error, which basically represents a logical grouping for similar type
of errors. Here is the list of possible value for this property.

ERROR TYPE DESCRIPTION

DeviceTemplateError Errors related to device mapping templates

ERROR TYPE

DeviceMessageError

FHIRTemplateError

FHIRConversionError

FHIRResourceError

FHIRServerError

GeneralError

DESCRIPTION

Errors occurred when processing a specific device message

Errors related to FHIR mapping templates

Errors occurred when transforming a message into a FHIR
resource

Errors related to existing resources in the FHIR server that
are referenced by 10T Connector

Errors that occur when communicating with FHIR server

All other types of errors

The name of the error

This property provides the name for a specific error. Here is the list of all error names with their description and
associated error type(s), severity, and data flow stage(s).

ERROR NAME DESCRIPTION ERROR TYPE(S) ERROR SEVERITY DATA FLOW STAGE(S)

MultipleResourceFou
ndException

TemplateNotFoundEx
ception

CorrelationldNotDefi
nedException

Error occurred when
multiple patient or

device resources are
found in the FHIR

server for respective
identifiers present in
the device message

A device or FHIR
mapping template
isn't configured with
the instance of loT
Connector

Correlation ID isn't
specified in the
device mapping
template.
CorrelationldNotDefi
nedException is a
conditional error that
would occur only
when FHIR
Observation must
group device
measurements using
a correlation ID but
it's not configured
correctly

FHIRResourceError

DeviceTemplateError,
FHIRTemplateError

DeviceMessageError

Error

Critical

Error

FHIRConversion

Normalization,
FHIRConversion

Normalization

ERROR NAME

PatientDeviceMismat
chException

PatientNotFoundExce
ption

DeviceNotFoundExce
ption

PatientldentityNotDe
finedException

DeviceldentityNotDef
inedException

DESCRIPTION

This error occurs
when the device
resource on the FHIR
server has a
reference to a patient
resource, which
doesn't match with
the patient identifier
present in the
message

No Patient FHIR
resource is
referenced by the
Device FHIR resource
associated with the
device identifier
present in the device
message. Note this
error will only occur
when loT Connector
instance is configured
with Lookup
resolution type

No device resource
exists on the FHIR
Server associated
with the device
identifier present in
the device message

This error occurs
when expression to
parse patient
identifier from the
device message isn't
configured on the
device mapping
template or patient
identifer isn't present
in the device
message. Note this
error occurs only
when loT Connector's
resolution type is set
to Create

This error occurs
when expression to
parse device identifier
from the device
message isn't
configured on the
device mapping
template or device
identifer isn't present
in the device
message

ERROR TYPE(S)

FHIRResourceError

FHIRConversionError

DeviceMessageError

DeviceTemplateError

DeviceTemplateError

ERROR SEVERITY

Error

Error

Error

Critical

Critical

DATA FLOW STAGE(S)

FHIRConversionError

FHIRConversion

Normalization

Normalization

Normalization

ERROR NAME DESCRIPTION

NotSupportedExcepti Error occurred when

on device message with
unsupported format
is received

ERROR TYPE(S)

DeviceMessageError

ERROR SEVERITY

Error

DATA FLOW STAGE(S)

Normalization

Creating copies of the Azure |oT Connector for FHIR (preview)

conversion mapping JSON

The copying of Azure loT Connector for FHIR mapping files can be useful for editing and archiving outside of the

Azure portal website.

The mapping file copies should be provided to Azure Technical Support when opening a support ticket to assist

in troubleshooting.

NOTE

JSON is the only supported format for Device and FHIR mapping files at this time.

TIP

Learn more about the Azure loT Connector for FHIR Device and FHIR conversion mapping JSSON

1. Select "loT Connector (preview)" on the lower left side of the Azure API for FHIR resource dashboard

in the "Add-ins" section.

A fhirserver - Microsoft Azure x ==

&)

A https;//portal.azure.com

m SLscorh eowces serviees #nd o 64

€ Dashboard

1 Create a resource @ fhirserver

or FHIR

(& Dashboard

B Delete

: Online

= all services « O Refresh = Move
JERIORIES @ overview Resource group (change) : fhirserver
i Al resources 8 Adiwvitylog Status

(%) Resource groups B Access control (IAM) Loeation

& sQL datsbases ® s
Subscription ID
% Azure Cosmos DB ubscription

. Tags (change)
® Azure Active Directory gs (chang
» Authentication

@ cost Management + Billing =
& cors

Subscription (change)

: WestUs 2

: Click here to add tags

Links
@ Database
& Integration C{‘ Getting started with your FHIR service.
Lear how to access your FHIR se
Identity
B Locks

B3 Export template

Add-ins

10T Connector (preview)

2. Select the "Connector" that you'll be copying the conversion

FHIR metadata endpoint

Provisioned throughput (..

FHIR Version

10T Connectors

azureUser @
perauLT DIRECTORY 9|

metadata
400
R4

mapping JSON from.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-main-with-box.png#lightbox

2 imes s s e)

“ Dashboard

» fhirserver | loT Connector (preview)
Azure API for FHIR

1 Create a resource

[Ed pashboard

All services P Search (Ctrl+/) «

H FAVORITES

+ add O Refresh

@ overview
View and configure Connectors used to ingest data from Intemet of Things (IoT) into “fhirserver”

Al resources & Activity log

(%) Resource groups B Socessiconiiol (A0 Name Status Connections Device mapping
& saL databases ® Tags Online 4 Q
connector2 Online 2 o

% Azure Cosmos DB
Settings
® Azure Active Directory
® Authentication

Links

© cost Management + Billing e

@ cors

@ Database 7I Deploy loT Connector using Azure portal
D Learn more about IoT Connector

@ integration
10T Connector overview

Identity Data flow inside IoT Connector

B Locks
B2 Export template
Add-ins

0T Connector (preview)

azureUser

'DEFAULT DIRECTORY

FHIR mapping

(]
[

NOTE

This process may also be used for copying and saving the contents of the "Configure FHIR mapping” JSON.

3. Select "Configure device mapping".

2o o s el G o)

«

Dashboard > fhirserver | loT Connector (preview)

T Create a resource
» connectorl & X
& pashboard IoT Connector (preview)
= All services 5 save X piscard () Refresh [i] Delete & Manage client connections | €5} Configure device mapping | ¥ Configure FHIR mapping
* FAVORITES
Configure an existing Connector to ingest data from Internet of Things (1T) into "fhirserver"
All resources
Resolution type * @ Lookup v
(%) Resource groups
& sQL databases
% Azure Cosmos DB Links

® Azure Active Directory
C{I 10T Connector mapping templates

© cost Management + illng Leam how to connect IoT devices

Connecting loT devices through Azure loT Hub

4. Select the contents of the JSON and do a copy operation (for example: Select Ctrl + c).

«

Dashboard > fhirserver | loT Connector (preview) > connector!

» Device mapping

ToT Connector (preview)

T Create a resource
[Dashboard

All services save X Discard (O Refresh

* FAVORITES
View and configure device mapping associated with "connector1” IoT Connector

All resources

118

(5] Resource groups 2 : "CollectionContent”,

& saL databases j

T Azure Cosmos DB 5 "templateType”: "JsonPathContent™,

B 6 “template"s {

® Azure Active Diractory 7 N T Fenr T

© CostManagement + Biling 8 ‘typetiatchExpression <[2(@heartRate)]",
9 “deviceIdExpressio leviceId”,
10 "timestampExpression”: "$.endDate",
1 “values": [
12 {
13 “required”: "tru
14 "valueExpression”: "$.heartRate”,
15 “valueName": “hr"
16 b
17 1
12 }
19 }
20 1
21 | Y

5. Do a paste operation (for example: Select Ctrl + v) into a new file within an editor (for example: Visual

Studio Code, Notepad) and save the file with an * json extension.

TIP

your conversion mapping JSON to help with the troubleshooting process.

If you'll be opening a Azure Technical Support ticket for the Azure loT Connector for FHIR, make sure to include copies of

Next steps

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-select-connector-with-box.png#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-select-device-with-box.png#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-select-device-json-with-box.png#lightbox
https://azure.microsoft.com/support/create-ticket/

Check out frequently asked questions about the Azure loT Connector for FHIR.
Azure loT Connector for FHIR FAQs

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered
trademark of HL7 and is used with the permission of HL7.

Azure Active Directory identity configuration for

Azure API for FHIR

3/11/2021 « 4 minutes to read Edit Online

An important piece when working with healthcare data is to ensure that the data is secure and cannot be
accessed by unauthorized users or applications. FHIR servers use OAuth 2.0 to ensure this data security. The
Azure API for FHIR is secured using Azure Active Directory, which is an example of an OAuth 2.0 identity
provider. This article provides an overview of FHIR server authorization and the steps needed to obtain a token
to access a FHIR server. While these steps will apply to any FHIR server and any identity provider, we will walk
through Azure API for FHIR as the FHIR server and Azure AD as our identity provider in this article.

Access control overview

In order for a client application to access Azure API for FHIR, it must present an access token. The access token is
a signed, Base64 encoded collection of properties (claims) that convey information about the client's identity
and roles and privileges granted to the client.

There are a number of ways to obtain a token, but the Azure API for FHIR doesn't care how the token is obtained
as long as it's an appropriately signed token with the correct claims.

Using authorization code flow as an example, accessing a FHIR server goes through the four steps below:

o O o

GET /authorize e.g. GET /Patient
POST /token {"resourceType”: "bundle”, ... }
Azure
. . Azure API for FHIR
Active Directory

1. The client sends a request to the /authorize endpoint of Azure AD. Azure AD will redirect the client to a sign-
in page where the user will authenticate using appropriate credentials (for example username and password
or two-factor authentication). See details on obtaining an authorization code. Upon successful authentication,
an authorization codeiis returned to the client. Azure AD will only allow this authorization code to be
returned to a registered reply URL configured in the client application registration (see below).

2. The client application exchanges the authorization code for an access token at the /token endpoint of Azure
AD. When requesting a token, the client application may have to provide a client secret (the applications
password). See details on obtaining an access token.

3. The client makes a request to the Azure API for FHIR, for example GET /Patient to search all patients. When
making the request, it includes the access token in an HTTP request header, for example

Authorization: Bearer eylee... ,where eyJee... represents the Base64 encoded access token.

4. The Azure API for FHIR validates that the token contains appropriate claims (properties in the token). If

everything checks out, it will complete the request and return a FHIR bundle with results to the client.

It is important to note that the Azure API for FHIR isn't involved in validating user credentials and it doesn't issue
the token. The authentication and token creation is done by Azure AD. The Azure API for FHIR simply validates
that the token is signed correctly (it is authentic) and that it has appropriate claims.

Structure of an access token

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/azure-ad-hcapi.md
https://oauth.net/2/
https://azure.microsoft.com/services/azure-api-for-fhir/
https://docs.microsoft.com/en-us/azure/active-directory/index
https://en.wikipedia.org/wiki/Base64
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code

Development of FHIR applications often involves debugging access issues. If a client is denied access to the
Azure API for FHIR, it's useful to understand the structure of the access token and how it can be decoded to

inspect the contents (the claims) of the token.
FHIR servers typically expect a JSON Web Token (JWT, sometimes pronounced "jot"). It consists of three parts:

1. A header, which could look like:

"alg": "HS256",
"typ": "IWT
3

2. The payload (the claims), for example:

{
"oid": "123",
"iss": "https://issuerurl”,
"iat": 1422779638,
"roles": [
"admin"

]
}

3. Assignature, which is calculated by concatenating the Base64 encoded contents of the header and the
payload and calculating a cryptographic hash of them based on the algorithm (alg) specified in the header.
A server will be able to obtain public keys from the identity provider and validate that this token was issued
by a specific identity provider and it hasn't been tampered with.

The full token consists of the Base64 encoded (actually Base64 url encoded) versions of those three segments.

The three segments are concatenated and separated witha . (dot).

An example token is seen below:

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyIvaWQiOiIxMjMiLCAiaXNzIjoiaHROCHM6LY9pc3N1ZXI1cmwilCIpYXQi0jEOMFI3NzZk
2MzgsInJvbGVzIjpbImFkbWluI1l19.gzSraSYS8EXBXLN_oWnFSRgCzcmImMjLiuyu5CSpyHI

The token can be decoded and inspected with tools such as https://jwt.ms. The result of decoding the token is:

{
"alg": "HS256",
"typ": "IWT"
ISt
"oid": "123",
"iss": "https://issuerurl”,
"iat": 1422779638,
"roles": [

"admin"

1
}.[Signature]

Obtaining an access token

As mentioned above, there are several ways to obtain a token from Azure AD. They are described in detail in the

Azure AD developer documentation.

Azure AD has two different versions of the OAuth 2.0 endpoints, which are referred to as vi.e and v2.e .Both

https://en.wikipedia.org/wiki/JSON_Web_Token
https://jwt.ms
https://docs.microsoft.com/en-us/azure/active-directory/develop/index

of these versions are OAuth 2.0 endpoints and the vi.e and v2.e designations refer to differences in how

Azure AD implements that standard.

When using a FHIR server, you can use either the vi.e orthe v2.e endpoints. The choice may depend on the

authentication libraries you are using in your client application.
The pertinent sections of the Azure AD documentation are:

e vi.e endpoint
o Authorization code flow.
o Client credentials flow.
e v2.e endpoint
o Authorization code flow.

o Client credentials flow.

There are other variations (for example on behalf of flow) for obtaining a token. Check the Azure AD
documentation for details. When using the Azure API for FHIR, there are also some shortcuts for obtaining an
access token (for debugging purposes) using the Azure CLI.

Next steps

In this document, you learned some of the basic concepts involved in securing access to the Azure API for FHIR
using Azure AD. To learn how to deploy an instance of the Azure API for FHIR, continue to the deployment
quickstart.

Deploy Azure API for FHIR

https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-oauth2-client-creds-grant-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow

Azure API for FHIR access token validation

3/11/2021 « 2 minutes to read ¢ Edit Online

How Azure API for FHIR validates the access token will depend on implementation and configuration. In this

article, we will walk through the validation steps, which can be helpful when troubleshooting access issues.

Validate token has no issues with identity provider

The first step in the token validation is to verify that the token was issued by the correct identity provider and
that it hasn't been modified. The FHIR server will be configured to use a specific identity provider known as the
authority Authority . The FHIR server will retrieve information about the identity provider from the

/.well-known/openid-configuration endpoint. When using Azure AD, the full URL would be:
GET https://login.microsoftonline.com/<TENANT-ID>/.well-known/openid-configuration

where <TENANT-ID> is the specific Azure AD tenant (either a tenant ID or a domain name).

Azure AD will return a document like the one below to the FHIR server.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/azure-ad-hcapi-token-validation.md

"authorization_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/authorize",
"token_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/token",
"token_endpoint_auth_methods_supported": [

"client_secret_post”,

"private_key_jwt",

"client_secret_basic"
])
"jwks_uri": "https://login.microsoftonline.com/common/discovery/keys",
"response_modes_supported": [

"query",
"fragment",
"form_post"
1,
"subject_types_supported": [
"pairwise"
1,
"id_token_signing_alg_values_supported": [
"RS256"
1,

"http_logout_supported”: true,
"frontchannel_logout_supported": true,
"end_session_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/logout”,
"response_types_supported": [
"code",
"id_token",
"code id_token",
"token id_token",
"token"
1,
"scopes_supported": [
"openid"
])
"issuer": "https://sts.windows.net/<TENANT-ID>/",
"claims_supported”: [
"sub",
"iss",
"cloud_instance_name",
"cloud_instance_host_name",
"cloud_graph_host_name",
"msgraph_host",
"aud",
"exp",
"iat",
"auth_time",
"acr",
"amr",
"nonce",
"email",
"given_name",
"family_name",

"nickname”
])
"microsoft_multi_refresh_token": true,
"check_session_iframe": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/checksession"”,
"userinfo_endpoint"”: "https://login.microsoftonline.com/<TENANT-ID>/openid/userinfo”,
"tenant_region_scope": "WW",
"cloud_instance_name": "microsoftonline.com",
"cloud_graph_host_name": "graph.windows.net",
"msgraph_host": "graph.microsoft.com",

"rbac_url": "https://pas.windows.net"

The important properties for the FHIR server are jwks_uri , which tells the server where to fetch the encryption
keys needed to validate the token signature and issuer , which tells the server what will be in the issuer claim (
iss) of tokens issued by this server. The FHIR server can use this to validate that it is receiving an authentic

token.

Validate claims of the token

Once the server has verified the authenticity of the token, the FHIR server will then proceed to validate that the

client has the required claims to access the token.
When using the Azure API for FHIR, the server will validate:

1. The token has the right Audience (aud claim).

2. The user or principal that the token was issued for is allowed to access the FHIR server data plane. The oid

claim of the token contains an identity object ID, which uniquely identifies the user or principal.

We recommend that the FHIR service be configured to use Azure RBAC to manage data plane role assignments.
But you can also configure local RBAC if your FHIR service uses an external or secondary Azure Active Directory
tenant.

When using the OSS Microsoft FHIR server for Azure, the server will validate:

1. The token has the right Audience (aud claim).

2. The token has a role in the roles claim, which is allowed access to the FHIR server.
Consult details on how to define roles on the FHIR server.

A FHIR server may also validate that an access token has the scopes (in token claim scp) to access the part of
the FHIR API that a client is trying to access. Currently, the Azure API for FHIR and the FHIR server for Azure do
not validate token scopes.

Next steps

Now that you know how to walk through token validation, you can complete the tutorial to create a JavaScript
application and read FHIR data.

Web application tutorial

https://github.com/microsoft/fhir-server/blob/master/docs/Roles.md

Add data to audit logs by using custom HTTP

headers

3/11/2021 « 2 minutes to read = Edit Online

In the Azure Fast Healthcare Interoperability Resources (FHIR) API, a user might want to include additional
information in the logs, which comes from the calling system.

For example, when the user of the APl is authenticated by an external system, that system forwards the call to
the FHIR API. At the FHIR API layer, the information about the original user has been lost, because the call was
forwarded. It might be necessary to log and retain this user information for auditing or management purposes.
The calling system can provide user identity, caller location, or other necessary information in the HTTP headers,
which will be carried along as the call is forwarded.

You can see this data flow in the following diagram:

Microsoft FHIR API Subscription

Customer Subscription
{ "X-MS-AZUREFHIR-AUDIT-SITE" :"HospitalA"})
HTTP Headers: serialized headers_,. WYY
X-MS-AZUREFHIR-AUDIT-SITE: Logging
HospitalA Storage
AuditLogger ‘
. o serialized headers
custom Authentication | forwarded Azure AP! for FHIR
headers Layer headers

Worker

process

serialized headers

A

Customer
Storage

Event Hub, Azure Blob Store, Log Analytics

You can use custom headers to capture several types of information. For example:

e |dentity or authorization information
e Origin of the caller
e Originating organization

e C(lient system details (electronic health record, patient portal)

IMPORTANT

Be aware that the information sent in custom headers is stored in a Microsoft internal logging system for 30 days after
being available in Azure Log Monitoring. We recommend encrypting any information before adding it to custom headers.

You should not pass any PHI information through customer headers.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/use-custom-headers.md

You must use the following naming convention for your HTTP headers: X-MS-AZUREFHIR-AUDIT-<name>.
These HTTP headers are included in a property bag that is added to the log. For example:

e X-MS-AZUREFHIR-AUDIT-USERID: 1234
o X-MS-AZUREFHIR-AUDIT-USERLOCATION: XXXX
o X-MS-AZUREFHIR-AUDIT-XYZ: 1234

This information is then serialized to JSON when it's added to the properties column in the log. For example:

{ "X-MS-AZUREFHIR-AUDIT-USERID" : "1234",
"X-MS-AZUREFHIR-AUDIT-USERLOCATION" : "XXXX",
"X-MS-AZUREFHIR-AUDIT-XYZ" : "1234" }

As with any HTTP header, the same header name can be repeated with different values. For example:

e X-MS-AZUREFHIR-AUDIT-USERLOCATION: Hospital A
o X-MS-AZUREFHIR-AUDIT-USERLOCATION: Emergency

When added to the log, the values are combined with a comma delimited list. For example:
{ "X-MS-AZUREFHIR-AUDIT-USERLOCATION" : "HospitalA, Emergency" }

You can add a maximum of 10 unique headers (repetitions of the same header with different values are only
counted as one). The total maximum length of the value for any one header is 2048 characters.

If you're using the Firefly C# client API library, the code looks something like this:

FhirClient client;
client = new FhirClient(serverurl);
client.OnBeforeRequest += (object sender, BeforeRequestEventArgs e) =>

{
// Add custom headers to be added to the logs

e.RawRequest.Headers.Add("X-MS-AZUREFHIR-AUDIT-UserLocation", "HospitalA");
s
client.Get("Patient");

Next steps

In this article, you learned how to add data to audit logs by using custom headers in the Azure API for FHIR.
Next, learn about other additional settings you can configure in the Azure API for FHIR.

Additional Settings

Azure |loT Connector for FHIR (preview) data flow

3/11/2021 « 3 minutes to read « Edit Online

This article provides an overview of data flow in Azure loT Connector for Fast Healthcare Interoperability
Resources (FHIR®))*. You'll learn about different data processing stages within Azure loT Connector for FHIR

that transform device data into FHIR-based Observation resources.

4

N

Azure loT Hub

Azure loT Azure APl for FHIR
Connector for FHIR

®
\ Azure loT Central

Diagram above shows common data flows using Azure loT Connector for FHIR.

c— E3

(@)

Below are different stages that data goes through once received by Azure loT Connector for FHIR.

Ingest

Ingest is the first stage where device data is received into Azure loT Connector for FHIR. The ingestion endpoint
for device data is hosted on an Azure Event Hub. Azure Event Hub platform supports high scale and throughput
with ability to receive and process millions of messages per second. It also enables Azure IoT Connector for FHIR

to consume messages asynchronously, removing the need for devices to wait while device data gets processed.

NOTE
JSON is the only supported format at this time for device data.

Normalize

Normalize is the next stage where device data is retrieved from the above Azure Event Hub and processed using
device mapping templates. This mapping process results in transforming device data into a normalized schema.

The normalization process not only simplifies data processing at later stages but also provides the ability to
project one input message into multiple normalized messages. For instance, a device could send multiple vital
signs for body temperature, pulse rate, blood pressure, and respiration rate in a single message. This input
message would create four separate FHIR resources. Each resource would represent different vital sign, with the
input message projected into four different normalized messages.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-data-flow.md
https://www.hl7.org/fhir/observation.html
https://docs.microsoft.com/en-us/azure/event-hubs/index

Group

Group is the next stage where the normalized messages available from the previous stage are grouped using
three different parameters: device identity, measurement type, and time period.

Device identity and measurement type grouping enable use of SampledData measurement type. This type
provides a concise way to represent a time-based series of measurements from a device in FHIR. And time
period controls the latency at which Observation resources generated by Azure loT Connector for FHIR are
written to Azure API for FHIR.

NOTE

The time period value is defaulted to 15 minutes and cannot be configured for preview.

Transform

In the Transform stage, grouped-normalized messages are processed through FHIR mapping templates.
Messages matching a template type get transformed into FHIR-based Observation resources as specified
through the mapping.

At this point, Device resource, along with its associated Patient resource, is also retrieved from the FHIR server
using the device identifier present in the message. These resources are added as a reference to the Observation
resource being created.

NOTE

All identity look ups are cached once resolved to decrease load on the FHIR server. If you plan on reusing devices with
multiple patients it is advised you create a virtual device resource that is specific to the patient and send virtual device
identifier in the message payload. The virtual device can be linked to the actual device resource as a parent.

If no Device resource for a given device identifier exists in the FHIR server, the outcome depends upon the value
of Resolution Type set atthe time of creation. When setto Lookup , the specific message is ignored, and the
pipeline will continue to process other incoming messages. If set to create , Azure loT Connector for FHIR will

create a bare-bones Device and Patient resources on the FHIR server.

Persist

Once the Observation FHIR resource is generated in the Transform stage, resource is saved into Azure API for
FHIR. If the FHIR resource is new, it will be created on the server. If the FHIR resource already existed, it will get

updated.

Next steps

Click below next step to learn how to create device and FHIR mapping templates.
Azure loT Connector for FHIR mapping templates

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered
trademark of HL7 and is used with the permission of HL7.

https://www.hl7.org/fhir/datatypes.html#SampledData
https://www.hl7.org/fhir/device.html
https://www.hl7.org/fhir/patient.html

Azure loT Connector for FHIR (preview) mapping

templates

4/5/2021 « 11 minutes to read = Edit Online

This article details how to configure Azure loT Connector for Fast Healthcare Interoperability Resources
(FHIR®))* using mapping templates.

The Azure loT Connector for FHIR requires two types of JSON-based mapping templates. The first type, Device
mapping, is responsible for mapping the device payloads sent to the devicedata Azure Event Hub end point. It
extracts types, device identifiers, measurement date time, and the measurement value(s). The second type, FHIR
mapping, controls the mapping for FHIR resource. It allows configuration of the length of the observation
period, FHIR data type used to store the values, and terminology code(s).

The mapping templates are composed into a JSON document based on their type. These JSON documents are
then added to your Azure loT Connector for FHIR through the Azure portal. The Device mapping document is
added through the Configure Device mapping page and the FHIR mapping document through the
Configure FHIR mapping page.

NOTE

Mapping templates are stored in an underlying blob storage and loaded from blob per compute execution. Once updated
they should take effect immediately.

Device mapping

Device mapping provides mapping functionality to extract device content into a common format for further
evaluation. Each message received is evaluated against all templates. This approach allows a single inbound
message to be projected to multiple outbound messages, which are later mapped to different observations in
FHIR. The result is a normalized data object representing the value or values parsed by the templates. The
normalized data model has a few required properties that must be found and extracted:

PROPERTY DESCRIPTION

Type The name/type to classify the measurement. This value is
used to bind to the required FHIR mapping template.
Multiple templates can output to the same type allowing
you to map different representations across multiple devices
to a single common output.

OccurenceTimeUtc The time the measurement occurred.

Deviceld The identifier for the device. This value should match an
identifier on the device resource that exists on the
destination FHIR server.

Properties Extract at least one property so the value can be saved in
the Observation resource created. Properties are a collection
of key value pairs extracted during normalization.

Below is a conceptual example of what happens during normalization.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-mapping-templates.md

The content payload itself is an Azure Event Hub message, which is composed of three parts: Body, Properties,
and SystemProperties. The Body is a byte array representing an UTF-8 encoded string. During template
evaluation, the byte array is automatically converted into the string value. properties is a key value collection
for use by the message creator. SystemProperties is also a key value collection reserved by the Azure Event Hub
framework with entries automatically populated by it.

"Body": {
"content": "value"

})

"Properties": {
"keyl": "valuel",
"key2": "value2"

})
"SystemProperties": {
"x-opt-sequence-number": 1,
"x-opt-enqueued-time": "2019-02-01T22:46:01.8750000Z",
"x-opt-offset": 1,
"x-opt-partition-key": "1"
}
}

Mapping with JSON path
The three device content template types supported today rely on JSON Path to both match the required

template and extracted values. More information on JSON Path can be found here. All three template types use
the JSON .NET implementation for resolving JSON Path expressions.

JsonPathContentTemplate
The JsonPathContentTemplate allows matching on and extracting values from an Event Hub message using
JSON Path.

PROPERTY DESCRIPTION EXAMPLE
TypeName The type to associate with heartrate
measurements that match the
template.
TypeMatchExpression The JSON Path expression that is $..[?(@heartRate)]

evaluated against the Event Hub
payload. If a matching JToken is found,
the template is considered a match. All
subsequent expressions are evaluated
against the extracted JToken matched
here.

TimestampExpression The JSON Path expression to extract $.endDate
the timestamp value for the
measurement's OccurenceTimeUtc.

DeviceldExpression The JSON Path expression to extract $.deviceId
the device identifier.

PatientldExpression Optionat The JSON Path expression to $.patientId
extract the patient identifier.

EncounterldExpression Optionat The JSON Path expression to $.encounterId
extract the encounter identifier.

Values[].ValueName The name to associate with the value hr
extracted by the subsequent
expression. Used to bind the required
value/component in the FHIR mapping
template.

https://goessner.net/articles/JsonPath/
https://www.newtonsoft.com/json/help/html/QueryJsonSelectTokenJsonPath.htm

PROPERTY DESCRIPTION

Values[].ValueExpression The JSON Path expression to extract
the required value.

Values[].Required Will require the value to be present in
the payload. If not found, a
measurement will not be generated
and an InvalidOperationException will
be thrown.

Examples
Heart rate
Message
{
"Body": {
"heartRate": "78",
"endDate": "2019-02-01T22:46:01.8750000Z",
"deviceId": "device123"
})

"Properties": {},
"SystemProperties”: {}

}
Template
{
"templateType": "JsonPathContent",
"template": {
"typeName": "heartrate",
"typeMatchExpression": "$..[?(@heartRate)]",
"deviceIdExpression": "$.deviceId",
"timestampExpression": "$.endDate",
"values": [
{
"required": "true",
"valueExpression": "$.heartRate",
"valueName": "hr"
}
1
}
}

Blood pressure

Message
{

"Body": {
"systolic": "123",
"diastolic" : "87",
"endDate": "2019-02-01T722:46:01.8750000Z",
"deviceId": "devicel23"

s

"Properties": {},
"SystemProperties": {}

EXAMPLE

$.heartRate

true

Template

{
"typeName": "bloodpressure",
"typeMatchExpression": "$..[?(@systolic && @diastolic)]",
"deviceIdExpression": "$.deviceId",
"timestampExpression": "$.endDate",
"values": [
{
"required": "true",
"valueExpression": "$.systolic",
"valueName": "systolic"
})
{
"required": "true",
"valueExpression": "$.diastolic",
"valueName": "diastolic"
}
1
}

Project multiple measurements from single message

Message
{

"Body": {
"heartRate": "78",
"steps": "2",
"endDate": "2019-02-01T22:46:01.8750000Z2",
"deviceId": "devicel23"

s

"Properties": {},
"SystemProperties": {}

}
Template 1
{
"templateType": "JsonPathContent",
"template": {
"typeName": "heartrate",
"typeMatchExpression": "$..[?(@heartRate)]",
"deviceIdExpression": "$.deviceId",
"timestampExpression": "$.endDate",
"values": [
{
"required": "true",
"valueExpression": "$.heartRate",
"valueName": "hr"
}
1
}
}

Template 2

"templateType": "JsonPathContent",

"template": {
"typeName": "stepcount",
"typeMatchExpression": "$..[?(@steps)]",
"deviceIdExpression": "$.deviceId",
"timestampExpression": "$.endDate",
"values": [
{
"required": "true",
"valueExpression": "$.steps",
"valueName": "steps"
}
1
}

Project multiple measurements from array in message

Message
{
"Body": [
{
"heartRate": "78",
"endDate": "2019-02-01T22:46:01.8750000Z",
"deviceId": "devicel23"
1
{
"heartRate": "81",
"endDate": "2019-02-01T23:46:01.8750000Z2",
"deviceId": "device123"
} B
{
"heartRate": "72",
"endDate": "2019-02-01T24:46:01.8750000Z",
"deviceId": "devicel23"
}
])

"Properties”: {},
"SystemProperties": {}

}
Template
{
"templateType": "JsonPathContent",
"template": {
"typeName": "heartrate",
"typeMatchExpression": "$..[?(@heartRate)]",
"deviceIdExpression": "$.deviceId",
"timestampExpression": "$.endDate",
"values": [
{
"required": "true",
"valueExpression": "$.heartRate",
"valueName": "hr"
}
1
}
}

lotJsonPathContentTemplate

The lotJsonPathContentTemplate is similar to the JsonPathContentTemplate except the DeviceldExpression and
TimestampExpression aren't required.

The assumption when using this template is the messages being evaluated were sent using the Azure loT Hub
Device SDKs or Export Data (legacy) feature of Azure IoT Central. When using these SDKs, the device identity
(assuming the device identifier from Azure lot Hub/Central is registered as an identifer for a device resource on
the destination FHIR server) and the timestamp of the message are known. If you're using Azure loT Hub Device
SDKs but are using custom properties in the message body for the device identity or measurement timestamp,
you can still use the JsonPathContentTemplate.

Note: When using the lot/sonPathContentTemplate, the TypeMatchExpression should resolve to the entire
message as a JToken. See the examples below.

Examples
Heart rate
Message
{
"Body": {
"heartRate": "78"
s
"Properties": {
"iothub-creation-time-utc" : "2019-02-01T22:46:01.8750000Z"
s
"SystemProperties”: {
"iothub-connection-device-id" : "devicel23"
}
}
Template
{
"templateType": "JsonPathContent",
"template": {
"typeName": "heartrate",
"typeMatchExpression": "$..[?(@Body.heartRate)]",
"deviceIdExpression": "$.deviceId",
"timestampExpression": "$.endDate",
"values": [
{
"required": "true",
"valueExpression": "$.Body.heartRate",
"valueName": "hr"
}
]
}
}

Blood pressure

Message

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data-legacy
https://docs.microsoft.com/en-us/azure/iot-central/core/overview-iot-central

"Body": {
"systolic": "123",
"diastolic" : "87"
s
"Properties": {
"iothub-creation-time-utc" : "2019-02-01T22:46:01.8750000Z"
s
"SystemProperties": {
"iothub-connection-device-id" : "devicel23"
}
}
Template
{
"typeName": "bloodpressure",
"typeMatchExpression": "$..[?(@Body.systolic & @Body.diastolic)]",
"values": [
{
"required”: "true",
"valueExpression": "$.Body.systolic",
"valueName": "systolic"
s
{
"required": "true",
"valueExpression": "$.Body.diastolic",
"valueName": "diastolic"
}
1
}

lotCentralJsonPathContentTemplate

The lotCentralJsonPathContentTemplate also doesn't require DeviceldExpression and TimestampExpression, and
used when messages being evaluated are sent through the Export Data feature of Azure loT Central. When using
this feature, the device identity (assuming the device identifier from Azure lot Central is registered as an
identifer for a device resource on the destination FHIR server) and the timestamp of the message are known. If
you're using Azure loT Central's Data Export feature but are using custom properties in the message body for
the device identity or measurement timestamp, you can still use the JsonPathContentTemplate.

Note: When using the lotCentral/sonPathContentlemplate, the TypeMatchExpression should resolve to the entire

message as a Jloken. See the examples below.

Examples
Heart rate

Message

https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data
https://docs.microsoft.com/en-us/azure/iot-central/core/overview-iot-central

"applicationId": "1dffa667-9bee-4f16-b243-25ad4151475e",
"messageSource": "telemetry",
"deviceId": "1lvzb5ghlsgl",
"schema": "default@vl",
"templateId": "urn:qugjévbw5:__ gbj_27r",
"enqueuedTime": "2020-08-05T22:26:55.455Z",
"telemetry": {
"HeartRate": "88",

})
"enrichments": {

"userSpecifiedKey": "sampleValue"
s
"messageProperties": {

"messageProp”: "value"

Template

"templateType": "IotCentrallsonPathContent",
"template": {
"typeName": "heartrate",
"typeMatchExpression": "$..[?(@telemetry.HeartRate)]",
"values": [
{
"required": "true",
"valueExpression": "$.telemetry.HeartRate",
"valueName": "hr"

Blood pressure

Message

"applicationId": "1dffa667-9bee-4f16-b243-25ad4151475e",
"messageSource": "telemetry",
"deviceId": "1lvzb5ghlsgl",
"schema": "default@vi",
"templateId": "urn:qugjévbw5:__ gbj_27r",
"enqueuedTime": "2020-08-05T22:26:55.455Z",
"telemetry": {
"BloodPressure": {
"Diastolic": "87",
"Systolic": "123"

}
}s
"enrichments": {
"userSpecifiedKey": "sampleValue"
})

"messageProperties": {
"messageProp": "value"

Template

"templateType": "IotCentrallsonPathContent",
"template": {
"typeName": "bloodPressure",
"typeMatchExpression": "$..[?(@telemetry.BloodPressure.Diastolic &&
@telemetry.BloodPressure.Systolic)]",

"values": [

{
"required": "true",
"valueExpression": "$.telemetry.BloodPressure.Diastolic",
"valueName": "bp_diastolic”

})

{
"required": "true",
"valueExpression": "$.telemetry.BloodPressure.Systolic",
"valueName": "bp_systolic"

FHIR mapping

Once the device content is extracted into a normalized model, the data is collected and grouped according to
device identifier, measurement type, and time period. The output of this grouping is sent for conversion into a
FHIR resource (Observation currently). Here the FHIR mapping template controls how the data is mapped into a
FHIR Observation. Should an observation be created for a point in time or over a period of an hour? What codes
should be added to the observation? Should value be represented as SampledData or a Quantity? These data
types are all options the FHIR mapping configuration controls.

CodeValueFhirTemplate

The CodeValueFhirTemplate is currently the only template supported in FHIR mapping at this time. It allows you
to define codes, the effective period, and the value of the observation. Multiple value types are supported:
SampledData, CodeableConcept, and Quantity. Along with these configurable values, the identifier for the
Observation resource and linking to the proper Device and Patient resources are handled automatically.

PROPERTY DESCRIPTION

TypeName The type of measurement this template should bind to.
There should be at least one Device mapping template that
outputs this type.

Periodinterval The period of time the observation created should represent.
Supported values are 0 (an instance), 60 (an hour), 1440 (a
day).

Category Any number of CodeableConcepts to classify the type of

observation created.

Codes One or more Codings to apply to the observation created.
Codes[].Code The code for the Coding.
Codes[].System The system for the Coding.

Codes|[].Display The display for the Coding.

https://www.hl7.org/fhir/observation.html
https://www.hl7.org/fhir/datatypes.html#SampledData
https://www.hl7.org/fhir/datatypes.html#Quantity
https://www.hl7.org/fhir/datatypes.html#SampledData
https://www.hl7.org/fhir/datatypes.html#CodeableConcept
https://www.hl7.org/fhir/datatypes.html#Quantity
http://hl7.org/fhir/datatypes-definitions.html#codeableconcept
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding

PROPERTY DESCRIPTION

Value The value to extract and represent in the observation. For
more information, see Value Type Templates.

Components Optional-One or more components to create on the
observation.

Components[].Codes One or more Codings to apply to the component.

Components[].Value The value to extract and represent in the component. For
more information, see Value Type Templates.

Value type templates

Below are the currently supported value type templates. In the future, further templates may be added.

SampledData

Represents the SampledData FHIR data type.Observation measurements are written to a value stream starting
at a point in time and incrementing forward using the period defined. If no value is present, an e will be written
into the data stream. If the period is such that two more values occupy the same position in the data stream, the
latest value is used. The same logic is applied when an observation using the SampledData is updated.

PROPERTY DESCRIPTION

DefaultPeriod The default period in milliseconds to use.

Unit The unit to set on the origin of the SampledData.
Quantity

Represents the Quantity FHIR data type. If more than one value is present in the grouping, only the first value is
used. When new value arrives that maps to the same observation it will overwrite the old value.

PROPERTY DESCRIPTION

Unit Unit representation.

Code Coded form of the unit.

System System that defines the coded unit form.

CodeableConcept
Represents the CodeableConcept FHIR data type. The actual value isn't used.

PROPERTY DESCRIPTION

Text Plain text representation.

Codes One or more Codings to apply to the observation created.
Codes[].Code The code for the Coding.

Codes[].System The system for the Coding.

http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes.html#SampledData
http://hl7.org/fhir/datatypes.html#Quantity
http://hl7.org/fhir/datatypes.html#CodeableConcept
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding

PROPERTY DESCRIPTION

Codes|[].Display The display for the Coding.

Examples

Heart rate - SampledData

"templateType": "CodeValueFhir",
"template": {
"codes": [
{
"code": "8867-4",
"system": "http://loinc.org",
"display": "Heart rate"

])
"periodInterval”: 60,
"typeName": "heartrate",
"value": {
"defaultPeriod": 5000,
"unit": "count/min",
"valueName": "hr",
"valueType": "SampledData"

Steps - SampledData

{
"templateType": "CodeValueFhir",
"template": {
"codes": [
{
"code": "55423-8",
"system": "http://loinc.org",
"display": "Number of steps"
}
1,
"periodInterval”: 60,
"typeName": "stepsCount",
"value": {
"defaultPeriod": 5000,
"unit": ""
"valueName": "steps",
"valueType": "SampledData"
}
}
}

Blood pressure - SampledData

http://hl7.org/fhir/datatypes-definitions.html#coding

"templateType": "CodeValueFhir",
"template": {
"codes": [

{
"code": "85354-9",
"display": "Blood pressure panel with all children optional®,

"system": "http://loinc.org"

1

"periodInterval”: 60,
"typeName": "bloodpressure",
"components": [
{
"codes": [

{
"code": "8867-4",

"display": "Diastolic blood pressure",
"system": "http://loinc.org"

1,

"value": {
"defaultPeriod": 5000,
"unit": "mmHg",
"valueName": "diastolic",
"valueType": "SampledData"

"codes": [

{
"code": "8480-6",

"display": "Systolic blood pressure",
"system": "http://loinc.org"

1,

"value": {
"defaultPeriod": 5000,
"unit": "mmHg",
"valueName": "systolic",
"valueType": "SampledData"

Blood pressure - Quantity

"templateType": "CodeValueFhir",
"template": {
"codes": [

{
"code": "85354-9",
"display": "Blood pressure panel with all children optional®,

"system": "http://loinc.org"

}
])
"periodInterval”: o,
"typeName": "bloodpressure",
"components": [
{
"codes": [
{
"code": "8867-4",
"display": "Diastolic blood pressure",
"system": "http://loinc.org"
}
1,
"value": {
"unit": "mmHg",
"valueName": "diastolic",
"valueType": "Quantity"
}
s
{
"codes": [
{
"code": "8480-6",
"display": "Systolic blood pressure",
"system": "http://loinc.org"
}
]J
"value": {
"unit": "mmHg",
"valueName": "systolic",
"valueType": "Quantity"
}
}
1

Device removed - CodeableConcept

"templateType": "CodeValueFhir",
"template": {
"codes": [

{

"code": "deviceEvent",
"system": "https://www.mydevice.com/v1",
"display": "Device Event"

1

"periodInterval”: o,
"typeName": "deviceRemoved",
"value": {
"text": "Device Removed",
"codes": [

{

"code": "deviceRemoved",
"system": "https://www.mydevice.com/v1",
"display": "Device Removed"

])

"valueName": "deviceRemoved",
"valueType": "CodeableConcept”

Next steps
Check out frequently asked questions on Azure loT Connector for FHIR (preview).
Azure loT Connector for FHIR FAQs

*In the Azure portal, Azure loT Connector for FHIR is referred to as loT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Azure Policy Regulatory Compliance controls for

Azure API for FHIR

5/14/2021 « 2 minutes to read « Edit Online

Regulatory Compliance in Azure Policy provides Microsoft created and managed initiative definitions, known as

built-ins, for the compliance domains and security controls related to different compliance standards. This

page lists the compliance domains and security controls for Azure API for FHIR. You can assign the built-ins

for a security control individually to help make your Azure resources compliant with the specific standard.

The title of each built-in policy definition links to the policy definition in the Azure portal. Use the link in the

Policy Version column to view the source on the Azure Policy GitHub repo.

IMPORTANT

may change over time.

Each control below is associated with one or more Azure Policy definitions. These policies may help you assess compliance
with the control; however, there often is not a one-to-one or complete match between a control and one or more policies.
As such, Compliant in Azure Policy refers only to the policies themselves; this doesn't ensure you're fully compliant with
all requirements of a control. In addition, the compliance standard includes controls that aren't addressed by any Azure
Policy definitions at this time. Therefore, compliance in Azure Policy is only a partial view of your overall compliance status.

The associations between controls and Azure Policy Regulatory Compliance definitions for these compliance standards

CMMC Level 3

To review how the available Azure Policy built-ins for all Azure services map to this compliance standard, see

Azure Policy Regulatory Compliance - CMMC Level 3. For more information about this compliance standard, see

Cybersecurity Maturity Model Certification (CMMC).

DOMAIN CONTROL ID CONTROL TITLE

Limit information
system access to
authorized users,
processes acting on
behalf of authorized
users, and devices
(including other

Access Control AC.1.001

information systems).

Limit information
system access to the
types of transactions
and functions that
authorized users are

Access Control AC.1.002

permitted to execute.

Control the flow of
CUl in accordance
with approved
authorizations.

Access Control AC.2.016

POLICY
(AZURE PORTAL)

CORS should not
allow every domain
to access your API
for FHIR

CORS should not
allow every domain
to access your API
for FHIR

CORS should not
allow every domain
to access your API
for FHIR

POLICY VERSION
(GITHUB)

1.0.0

1.0.0

1.0.0

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/security-controls-policy.md
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/regulatory-compliance
https://github.com/Azure/azure-policy
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/governance/policy/how-to/get-compliance-data
https://docs.microsoft.com/en-us/azure/governance/policy/samples/cmmc-l3
https://www.acq.osd.mil/cmmc/docs/CMMC_Model_Main_20200203.pdf
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json

DOMAIN

Configuration
Management

System and
Communications
Protection

System and
Communications
Protection

Next steps

CONTROL ID

CM.3.068

SC.3.177

SC.3.183

CONTROL TITLE

Restrict, disable, or
prevent the use of
nonessential
programs, functions,
ports, protocols, and
services.

Employ FIPS-
validated
cryptography when
used to protect the

confidentiality of CUL.

Deny network
communications
traffic by default and
allow network
communications
traffic by exception
(i.e., deny all, permit
by exception).

e | earn more about Azure Policy Regulatory Compliance.

e See the built-ins on the Azure Policy GitHub repo.

POLICY

CORS should not
allow every domain
to access your API
for FHIR

Azure API for FHIR
should use a
customer-managed
key to encrypt data
at rest

CORS should not
allow every domain
to access your API
for FHIR

POLICY VERSION

1.0.0

1.0.1

1.0.0

https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F051cba44-2429-45b9-9649-46cec11c7119
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_EnableByok_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/regulatory-compliance
https://github.com/Azure/azure-policy

Frequently asked questions about the Azure API for

FHIR

6/8/2021 « 7 minutes to read « Edit Online

Azure API for FHIR: The Basics

What is FHIR?

The Fast Healthcare Interoperability Resources (FHIR - Pronounced "fire") is an interoperability standard
intended to enable the exchange of healthcare data between different health systems. This standard was
developed by the HL7 organization and is being adopted by healthcare organizations around the world. The
most current version of FHIR available is R4 (Release 4). The Azure API for FHIR supports R4 and also supports
the previous version STU3 (Standard for Trial Use 3). For more information on FHIR, visit HL7.org.

Is the data behind the FHIR APIs stored in Azure?

Yes, the data is stored in managed databases in Azure. The Azure API for FHIR does not provide direct access to
the underlying data store.

What identity provider do you support?

We currently support Microsoft Azure Active Directory as the identity provider.

What is the Recovery Point Objective (RPO) for the Azure API for FHIR?

The Azure API for FHIR is backed by Cosmos DB as our persistence provider. Because of this, the RPO for the
service equals Cosmos DB (single region) and is < 240 minutes.

What FHIR version do you support?

We support versions 4.0.0 and 3.0.1 on both the Azure API for FHIR (PaaS) and FHIR Server for Azure (open
source).

For details, see Supported features. Read about what has changed between FHIR versions (i.e. STU3 to R4) in the
version history for HL7 FHIR.

Azure loT Connector for FHIR (preview) currently supports only FHIR version R4, and is visible only on R4
instances of Azure API for FHIR.

What's the difference between 'Microsoft FHIR Server for Azure' and the ‘Azure API for FHIR"?

The Azure API for FHIR is a hosted and managed version of the open-source Microsoft FHIR Server for Azure. In
the managed service, Microsoft provides all maintenance and updates.

When you run the FHIR Server for Azure, you have direct access to the underlying services, but are responsible
for maintaining and updating the server and all required compliance work if you're storing PHI data.

For a development standpoint, every feature that doesn't apply only to the managed service is first deployed to
the open-source Microsoft FHIR Server for Azure. Once it has been validated in open-source, it will be released
to the PaaS Azure API for FHIR solution. The time between the release in open-source and PaaS depends on the
complexity of the feature and other roadmap priorities. This is the same process for all of our services, such as
Azure loT Connector for FHIR (preview).

In which regions is Azure API for FHIR Available?

Currently, we have general availability for both public and government in multiple geo-regions. For information
about government cloud services at Microsoft, check out Azure services by FedRAMP.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-faq.md
http://hl7.org/fhir/summary.html
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://hl7.org/fhir/R4/history.html
https://azure.microsoft.com/global-infrastructure/services/?products=azure-api-for-fhir®ions=non-regional,us-east,us-east-2,us-central,us-north-central,us-south-central,us-west-central,us-west,us-west-2,canada-east,canada-central,usgov-non-regional,us-dod-central,us-dod-east,usgov-arizona,usgov-texas,usgov-virginia
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope

Where can | see what is releasing into the Azure API for FHIR?

To see some of what is releasing into the Azure API for FHIR, please refer to the release of the open-source FHIR
Server. We have worked to tag items with Azure-API-for-FHIR if they will release to the managed service and are
usually available two weeks after they are on the release page in open-source. We have also included
instructions on how to test the build here if you would like to test in your own environment. We are evaluating
how to best share additional managed service updates.

What is SMART on FHIR?

SMART (Substitutable Medical Applications and Reusable Technology) on FHIR is a set of open specifications to
integrate partner applications with FHIR Servers and other Health IT systems, such as Electronic Health Records
and Health Information Exchanges. By creating a SMART on FHIR application, you can ensure that your
application can be accessed and leveraged by a plethora of different systems. Authentication and Azure API for
FHIR. To learn more about SMART, visit SMART Health IT.

Where can | find what version of FHIR is running on my database.

You can find the exact FHIR version exposed in the capability statement under the "fhirVersion" property.

FHIR Implementations and Specifications

Can | create a custom FHIR resource?

We do not allow custom FHIR resources. If you need a custom FHIR resource, you can build a custom resource
on top of the Basic resource with extensions.

Are extensions supported on Azure API for FHIR?

We allow you to load any valid FHIR JSON data into the server. If you want to store the structure definition that
defines the extension, you could save this as a structure definition resource. To search on extensions, you'll need
to define your own search parameters.

What is the limit on _count?

The current limit on _count is 1000. If you set _count to more than 1000, you'll receive a warning in the bundle
that only 1000 records will be shown.

Are there any limitations on the Group Export functionality?

For Group Export we only export the included references from the group, not all the characteristics of the group
resource.

Can | post a bundle to the Azure API for FHIR?

We currently support posting batch bundles but do not support posting transaction bundles in the Azure API for
FHIR. You can use the open-source FHIR Server backed by SQL to post transaction bundles.

How can | get all resources for a single patient in the Azure API for FHIR?

We support compartment search in the Azure API for FHIR. This allows you to get all the resources related to a
specific patient. Note that right now compartment includes all the resources related to the patient but not the
patient itself so you will need to also search to get the patient if you need the patient resource in your results.

Some examples of this are below:

e GET Patient//*
o GET Patient//Observation
o GET Patient//Observation?code=8302-2

What is the default sort when searching for resources in Azure API for FHIR?

We support sorting by the date last updated: _sort=_lastUpdated. For more information about other supported
search parameters, see Overview of FHIR Search.

https://github.com/microsoft/fhir-server/releases
https://github.com/microsoft/fhir-server/blob/master/docs/Testing-Releases.md
https://smarthealthit.org/
http://www.hl7.org/fhir/basic.html
https://www.hl7.org/fhir/extensibility.html
https://nam06.safelinks.protection.outlook.com/?url=https%253A%252F%252Fdocs.microsoft.com%252Fazure%252Fhealthcare-apis%252Ffhir%252Fhow-to-do-custom-search&data=04%257C01%257Cv-stevewohl%2540microsoft.com%257Cc6a08c7f0c86433f248c08d925377d85%257C72f988bf86f141af91ab2d7cd011db47%257C1%257C0%257C637581742517376233%257CUnknown%257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%253D%257C1000&sdata=Ws%252FVQ2N33sMagzs393hmR67M9dNaL6WCLXyxXtor6PM%253D&reserved=0
https://www.hl7.org/fhir/group.html
https://www.hl7.org/fhir/valueset-bundle-type.html
https://www.hl7.org/fhir/compartmentdefinition.html

Does the Azure API for FHIR support $everything?

No. At this time we do not support $everything. However it can be achieved with two API calls. For example to
get Patient$everything, you can first grab the patient record using /Patient/[ID] and then a second call to retrieve
all the patient data using /Patient/[ID]/*.

You can see more details at this community post.

How does $export work?

$exportis part of the FHIR specification: https://hl7.org/fhir/uv/bulkdata/export/index.html. If the FHIR service is
configured with a managed identity and a storage account, and if the managed identity has access to that
storage account - you can simply call $export on the FHIR API and all the FHIR resources will be exported to the
storage account. For more information, check out our article on $export.

Is de-identified export available at Patient and Group level as well?

Anonymized export is currently supported only on a full system export (/$export), and not for Patient export
(/Patient/$export). We are working on making it available at the Patient level as well.

Using Azure API for FHIR

How do | enable log analytics for Azure API for FHIR?

We enable diagnostic logging and allow reviewing sample queries for these logs. For details on enabling audit
logs and sample queries, check out this section. If you want to include additional information in the logs, check

out using custom HTTP headers.

Where can | see some examples of using the Azure API for FHIR within a workflow?

We have a collection of reference architectures available on the Health Architecture GitHub page.

Where can | see an example of connecting a web application to Azure API for FHIR?

We have a Health Architecture GitHub page that contains example applications and scenarios. It illustrates how
to connect a web application to Azure API for FHIR.

Azure API for FHIR Features and Services

Is there a way to encrypt my data using my personal key not a default key?

Yes, Azure API for FHIR allows configuring customer-managed keys, leveraging support from Cosmos DB. For

more information about encrypting your data with a personal key, check out this section.

Azure API for FHIR: Preview Features

Can | configure scaling capacity for Azure loT Connector for FHIR (preview)?

Since Azure loT Connector for FHIR is free of charge during public preview, its scaling capacity is fixed and
limited. Azure loT Connector for FHIR configuration available in public preview is expected to provide a
throughput of about 200 messages per second. Some form of resource capacity configuration will be made
available in General Availability (GA).

Why can't | install Azure l1oT Connector for FHIR (preview) when Private Link is enabled on Azure API for
FHIR?

Azure loT Connector for FHIR doesn't support Private Link capability at this time. Hence, if you have Private Link
enabled on Azure API for FHIR, you can't install Azure loT Connector for FHIR and vice-versa. This limitation is
expected to go away when Azure loT Connector for FHIR is available for General Availability (GA).

https://chat.fhir.org/#narrow/stream/179166-implementers/topic/.24everything.20with.20_type
https://hl7.org/fhir/uv/bulkdata/export/index.html
https://github.com/microsoft/health-architectures
https://aka.ms/health-architectures

Features

6/8/2021 « 4 minutes to read » Edit Online

Azure API for FHIR provides a fully managed deployment of the Microsoft FHIR Server for Azure. The server is
an implementation of the FHIR standard. This document lists the main features of the FHIR Server.

FHIR version

Latest version supported: 4.e.1

Previous versions also currently supported include: 3.e.2

REST API

SUPPORTED - 0SS SUPPORTED - 0SS

API SUPPORTED - PAAS (sQvL) (COSMOS DB) COMMENT

read Yes Yes Yes

vread Yes Yes Yes

update Yes Yes Yes

update with Yes Yes Yes

optimistic locking

update (conditional) Yes Yes Yes

patch No No No

delete Yes Yes Yes See Note below.

delete (conditional) Yes Yes Yes

history Yes Yes Yes

create Yes Yes Yes Support both
POST/PUT

create (conditional) Yes Yes Yes Issue #1382

search Partial Partial Partial See Overview of FHIR
Search.

chained search Partial Yes Partial See Note 2 below.

reverse chained Partial Yes Partial See Note 2 below.

search

capabilities Yes Yes Yes

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-features-supported.md
https://hl7.org/fhir
https://github.com/microsoft/fhir-server/issues/1382

API

batch

transaction

paging

intermediaries

SUPPORTED - PAAS

Yes

No

Partial

No

SUPPORTED - OSS
(sQL)

Yes

Yes

Partial

No

SUPPORTED - OSS

(COSMOS DB) COMMENT

Yes

No

Partial self and next
are supported

No

NOTE

Delete defined by the FHIR spec requires that after deleting, subsequent non-version specific reads of a resource returns a
410 HTTP status code and the resource is no longer found through searching. The Azure API for FHIR also enables you to
fully delete (including all history) the resource. To fully delete the resource, you can pass a parameter settings
hardDelete to true (DELETE {server}/{resource}/{id}?hardDelete=true). If you do not pass this parameter or set
hardbelete to false, the historic versions of the resource will still be available.

Note 2

e Adds MVP support for Chained and Reverse Chained FHIR Search in CosmosDB.

In the Azure API for FHIR and the open-source FHIR server backed by Cosmos, the chained search and

reverse chained search is an MVP implementation. To accomplish chained search on Cosmos DB, the

implementation walks down the search expression and issues sub-queries to resolve the matched

resources. This is done for each level of the expression. If any query returns more than 100 results, an

error will be thrown. By default, chained search is behind a feature flag. To use the chained searching on

Cosmos DB, use the header x-ms-enable-chained-search: true . For more details, see PR 1695.

Extended Operations

All the operations that are supported that extend the RESTful API.

SEARCH PARAMETER
TYPE

$export (whole
system)

Patient/$export

Group/$export

$convert-data

$validate

$member-match

$patient-everything

SUPPORTED - PAAS

Yes

Yes

Yes

Yes

Yes

Yes

No

SUPPORTED - OSS
(sQL)

Yes

Yes

Yes

Yes

Yes

Yes

No

SUPPORTED - OSS

(COSMOS DB) COMMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

https://github.com/microsoft/fhir-server/pull/1695

Persistence

The Microsoft FHIR Server has a pluggable persistence module (see

Microsoft.Health.Fhir.Core.Features.Persistence).

Currently the FHIR Server open-source code includes an implementation for Azure Cosmos DB and SQL
Database.

Cosmos DB is a globally distributed multi-model (SQL API, MongoDB AP, etc.) database. It supports different
consistency levels. The default deployment template configures the FHIR Server with strong consistency, but
the consistency policy can be modified (generally relaxed) on a request by request basis using the

x-ms-consistency-level requestheader.

Role-based access control

The FHIR Server uses Azure Active Directory for access control. Specifically, role-based access control (RBAC) is
enforced, if the FhirServer:Security:Enabled configuration parameter is setto true , and all requests (except
/metadata) to the FHIR Server must have Authorization request header setto Bearer <TOKEN> . The token must
contain one or more roles as defined in the roles claim. A request will be allowed if the token contains a role

that allows the specified action on the specified resource.

Currently, the allowed actions for a given role are applied globally on the API.

Service limits

e Request Units (RUs) - You can configure up to 10,000 RUs in the portal for Azure API for FHIR. You will
need a minimum of 400 RUs or 40 RUs/GB, whichever is larger. If you need more than 10,000 RUs, you
can put in a support ticket to have this increased. The maximum available is 1,000,000.

e Bundle size - Each bundle is limited to 500 items.
e Data size - Data/Documents must each be slightly less than 2 MB.

e Subscription Limit - By default, each subscription is limited to a maximum of 10 FHIR Server Instances.

If you need more instances per subscription, open a support ticket and provide details about your needs.

e Concurrent connections and Instances - By default, you have 15 concurrent connections on two
instances in the cluster (for a total of 30 concurrent requests). If you need more concurrent requests,
open a support ticket and provide details about your needs.

Performance expectations

The performance of the system is dependent on the number of RUs, concurrent connections, and the type of
operations you're performing (Put, Post, etc.). Below are some general ranges of what you can expect based on
configured RUs. In general, performance scales linearly with an increase in RUs:

OF RUS RESOURCES/SEC MAX STORAGE (GB)*
400 5-10 10

1,000 100-150 25

10,000 225-400 250

100,000 2,500-4,000 2,500

https://github.com/Microsoft/fhir-server/tree/master/src/Microsoft.Health.Fhir.Core/Features/Persistence
https://docs.microsoft.com/en-us/azure/cosmos-db/index-overview
https://azure.microsoft.com/services/sql-database/
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://azure.microsoft.com/services/active-directory/
https://docs.microsoft.com/en-us/azure/cosmos-db/concepts-limits

Note: Per Cosmos DB requirement, there is a requirement of a minimum throughput of 40 RU/s per GB of

storage.

Next steps

In this article, you've read about the supported FHIR features in Azure API for FHIR. Next deploy the Azure API
for FHIR.

Deploy Azure API for FHIR

Related GitHub Projects

3/24/2021 « 2 minutes to read « Edit Online

We have many open-source projects on GitHub that provide you the source code and instructions to deploy
services for various uses. You are always welcome to visit our GitHub repositories to learn and experiment with
our features and products.

FHIR Server

e microsoft/fhir-server: open-source FHIR Server, which is the basis for Azure API for FHIR
e To see the latest releases, please refer to Release Notes

e microsoft/fhir-server-samples: a sample environment

Data Conversion & Anonymization

FHIR Converter
e microsoft/FHIR-Converter: a conversion utility to translate legacy data formats into FHIR

e Integrated with the Azure API for FHIR as well as FHIR server for Azure in the form of $convert-data
operation

e Ongoing improvements in OSS, and continual integration to the FHIR servers

FHIR Converter - VS Code Extension
e microsoft/FHIR-Tools-for-Anonymization: a set of tools for helping with data (in FHIR format) anonymization

e |Integrated with the Azure API for FHIR as well as FHIR server for Azure in the form of ‘de-identified export’

FHIR Tools for Anonymization

e microsoft/vscode-azurehealthcareapis-tools: a VS Code extension that contains a collection of tools to work
with Azure Healthcare APIs

e Released to Visual Studio Marketplace

e Used for authoring Liquid templates to be used in the FHIR Converter

loT Connector

Integration with loT Hub and loT Central

e microsoft/iomt-fhir: integration with loT Hub or IoT Central to FHIR with data normalization and FHIR
conversion of the normalized data

e Normalization: device data information is extracted into a common format for further processing

e FHIR Conversion: normalized and grouped data is mapped to FHIR. Observations are created or updated
according to configured templates and linked to the device and patient.

e Tools to help build the conversation map: visualize the mapping configuration for normalizing the device
input data and transform it to the FHIR resources. Developers can use this tool to edit and test the mappings,
device mapping and FHIR mapping, and export them for uploading to the loT Connector in the Azure portal.

HealthKit and FHIR Integration

e microsoft/healthkit-on-fhir: a Swift library that automates the export of Apple HealthKit Data to a FHIR
Server

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-github-projects.md
https://github.com/microsoft/fhir-server/
https://github.com/microsoft/fhir-server/releases
https://github.com/microsoft/fhir-server-samples
https://github.com/microsoft/FHIR-Converter
https://github.com/microsoft/FHIR-Tools-for-Anonymization
https://github.com/microsoft/vscode-azurehealthcareapis-tools
https://github.com/microsoft/iomt-fhir
https://github.com/microsoft/iomt-fhir/tree/master/tools/data-mapper
https://github.com/microsoft/healthkit-on-fhir

Partner ecosystem for Azure API for FHIR

3/11/2021 « 2 minutes to read ¢ Edit Online

We are excited that Azure API for FHIR has been released in generally availability to all Azure Customers. We are

even more excited about the solutions that you will build with our service.

When creating an end-to-end solution built around Azure API for FHIR, you may require the help of a partner
for their unique IP or for help stitching everything together. We are hard at work growing this ecosystem of
diverse partners and I'd like to introduce you to a few of them.

SUPPORTED
PARTNER CAPABILITIES COUNTRIES/REGIONS CONTACT
Medal De-identification, Legacy- USA Contact
FHIR conversion
Rhapsody Legacy-FHIR conversion USA, Australia, New Contact
Zealand
iINTERFACEWARE Legacy-FHIR conversion USA, Canada Contact
Darena Solutions Application Development, USA Contact
System Integrator
NewWave Application Development, USA Contact
System Integrator
Dapasoft Application Development, USA, Canada Contact
System Integrator
CitiusTech Application Development, USA, UAE, UK Contact
System Integrator
Firely Application Development, USA, EU Contact
System Integrator
Perspecta Application Development, USA Contact

System Integrator

Aridhia Analytics USA, EU Contact

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/partner-ecosystem.md
https://asab.squarespace.com/asab-medal/
https://rhapsody.health/contact-us
https://www.interfaceware.com/contact
https://www.darenasolutions.com/contact
https://newwave.io/get-in-touch/
https://www.dapasoft.com/contact-us/
https://azuremarketplace.microsoft.com/marketplace/apps/citiustech.ics?tab=Overview
https://fire.ly/contact/
https://perspecta.com/contact
https://azuremarketplace.microsoft.com/marketplace/apps/aridhiainformatics.analytixagility_workspace_123?tab=Overview

Azure Policy built-in definitions for Azure API for

FHIR

5/14/2021 « 2 minutes

to read « Edit Online

This page is an index of Azure Policy built-in policy definitions for Azure API for FHIR. For additional Azure Policy

built-ins for other services, see Azure Policy built-in definitions.

The name of each built-in policy definition links to the policy definition in the Azure portal. Use the link in the

Version column to view the source on the Azure Policy GitHub repo.

Azure API for FHIR

NAME
(AZURE PORTAL)

Azure API for FHIR should
use a customer-managed
key to encrypt data at rest

Azure API for FHIR should
use private link

CORS should not allow
every domain to access
your API for FHIR

Next steps

DESCRIPTION

Use a customer-managed
key to control the
encryption at rest of the
data stored in Azure API for
FHIR when this is a
regulatory or compliance
requirement. Customer-
managed keys also deliver
double encryption by
adding a second layer of
encryption on top of the
default one done with
service-managed keys.

Azure API for FHIR should
have at least one approved
private endpoint
connection. Clients in a
virtual network can securely
access resources that have
private endpoint
connections through
private links. For more
information, visit:
https://aka.ms/fhir-
privatelink.

Cross-Origin Resource
Sharing (CORS) should not
allow all domains to access
your API for FHIR. To
protect your API for FHIR,
remove access for all
domains and explicitly
define the domains allowed
to connect.

EFFECT(S)

audit, disabled

Audit, Disabled

audit, disabled

VERSION
(GITHUB)

1.0.1

1.0.0

1.0.0

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/policy-reference.md
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies
https://github.com/Azure/azure-policy
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F051cba44-2429-45b9-9649-46cec11c7119
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_EnableByok_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F1ee56206-5dd1-42ab-b02d-8aae8b1634ce
https://aka.ms/fhir-privatelink
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_PrivateLink_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json

e See the built-ins on the Azure Policy GitHub repo.
e Review the Azure Policy definition structure.

e Review Understanding policy effects.

https://github.com/Azure/azure-policy
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/effects

	Cover Page
	Azure API for FHIR
	Overview
	About Azure API for FHIR
	About Azure IoT Connector for FHIR (preview)

	Quickstarts
	Deploy Azure API for FHIR
	Using Portal
	Using PowerShell
	Using CLI
	Using ARM template

	Deploy Azure IoT Connector for FHIR (preview)
	Using Portal
	Using ARM template

	Tutorials
	Deploy JavaScript application
	1. Initial setup and FHIR deployment
	2. Register public client application
	3. Test setup with Postman
	4. Write web application

	Access FHIR API with Postman
	Use SMART on FHIR proxy
	Ingest data from IoT devices
	Receive device data through Azure IoT Hub

	Interoperability and Patient Access
	CMS Interoperability and Patient Access rule introduction
	CARIN Implementation Guide for Blue Button
	Da Vinci Drug Formulary
	Da Vinci PDex

	How-to guides
	Registering applications
	Register applications for Azure API for FHIR overview
	Resource application
	Confidential client application
	Public client application
	Service client application

	Configure settings
	Configure another Azure API for FHIR settings
	Configure Azure RBAC
	Configure Local RBAC
	Configure database settings
	Configure customer-managed keys
	Configure CORS
	Configure Export
	Configure Private Link

	Search
	Overview of FHIR search
	Defining custom search parameters
	How to run a reindex job
	Search examples for Azure API for FHIR

	Operations
	Profile validation
	Export data
	Export data
	De-identified export
	Move data to Synapse

	Convert data
	$convert-data and FHIR Converter Extension Templates

	Patient-everything in FHIR
	$member-match operation

	Find identity object IDs
	Diagnostic logging and metrics
	Enable Diagnostics Logging in Azure API for FHIR
	Display and configure Azure IoT Connector for FHIR (preview) metrics

	Get a token for Azure API for FHIR - CLI
	Troubleshoot failures in Azure IoT Connector for FHIR (preview)

	Concepts
	Azure AD and Azure API for FHIR Overview
	Access token validation
	Use Custom HTTP headers to add data to Audit Logs
	Azure IoT Connector for FHIR (preview) workings
	Azure IoT Connector for FHIR (preview) data flow
	Azure IoT Connector for FHIR (preview) mapping templates

	Security
	Security controls by Azure Policy

	Resources
	FAQ
	Supported features
	GitHub Projects
	Partner ecosystem

	Reference
	Azure CLI
	Azure Policy built-ins

