
Contents

 Azure API for FHIR
 Overview

 About Azure API for FHIR
 About Azure IoT Connector for FHIR (preview)

 Quickstarts
 Deploy Azure API for FHIR

 Using Portal
 Using PowerShell
 Using CLI
 Using ARM template

 Deploy Azure IoT Connector for FHIR (preview)
 Using Portal
 Using ARM template

 Tutorials
 Deploy JavaScript application

 1. Initial setup and FHIR deployment
 2. Register public client application
 3. Test setup with Postman
 4. Write web application

 Access FHIR API with Postman
 Use SMART on FHIR proxy
 Ingest data from IoT devices

 Receive device data through Azure IoT Hub
 Interoperability and Patient Access

 CMS Interoperability and Patient Access rule introduction
 CARIN Implementation Guide for Blue Button
 Da Vinci Drug Formulary
 Da Vinci PDex

 How-to guides

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/index.html#body

 Registering applications
 Register applications for Azure API for FHIR overview
 Resource application
 Confidential client application
 Public client application
 Service client application

 Configure settings
 Configure another Azure API for FHIR settings
 Configure Azure RBAC
 Configure Local RBAC
 Configure database settings
 Configure customer-managed keys
 Configure CORS
 Configure Export
 Configure Private Link

 Search
 Overview of FHIR search
 Defining custom search parameters
 How to run a reindex job
 Search examples for Azure API for FHIR

 Operations
 Profile validation
 Export data

 Export data
 De-identified export
 Move data to Synapse

 Convert data
 $convert-data and FHIR Converter Extension Templates

 Patient-everything in FHIR
 $member-match operation

 Find identity object IDs
 Diagnostic logging and metrics

 Enable Diagnostics Logging in Azure API for FHIR
 Display and configure Azure IoT Connector for FHIR (preview) metrics

 Get a token for Azure API for FHIR - CLI
 Troubleshoot failures in Azure IoT Connector for FHIR (preview)

 Concepts
 Azure AD and Azure API for FHIR Overview
 Access token validation
 Use Custom HTTP headers to add data to Audit Logs
 Azure IoT Connector for FHIR (preview) workings

 Azure IoT Connector for FHIR (preview) data flow
 Azure IoT Connector for FHIR (preview) mapping templates

 Security
 Security controls by Azure Policy

 Resources
 FAQ
 Supported features
 GitHub Projects
 Partner ecosystem

 Reference
 Azure CLI
 Azure Policy built-ins

https://docs.microsoft.com/cli/azure/healthcareapis

What is Azure API for FHIR®?
 3/11/2021 • 8 minutes to read • Edit Online

 Leveraging the power of your data with FHIR

 Securely manage health data in the cloud

 Free up your resources to innovate

 Enable interoperability with FHIR

Azure API for FHIR enables rapid exchange of data through Fast Healthcare Interoperability Resources (FHIR®)

APIs, backed by a managed Platform-as-a Service (PaaS) offering in the cloud. It makes it easier for anyone

working with health data to ingest, manage, and persist Protected Health Information PHI in the cloud:

Managed FHIR service, provisioned in the cloud in minutes

Enterprise-grade, FHIR®-based endpoint in Azure for data access, and storage in FHIR® format

High performance, low latency

Secure management of Protected Health Information (PHI) in a compliant cloud environment

SMART on FHIR for mobile and web implementations

Control your own data at scale with role-based access control (RBAC)

Audit log tracking for access, creation, modification, and reads within each data store

Azure API for FHIR allows you to create and deploy a FHIR service in just minutes to leverage the elastic scale of

the cloud. You pay only for the throughput and storage you need. The Azure services that power Azure API for

FHIR are designed for rapid performance no matter what size datasets you’re managing.

The FHIR API and compliant data store enable you to securely connect and interact with any system that utilizes

FHIR APIs. Microsoft takes on the operations, maintenance, updates, and compliance requirements in the PaaS

offering, so you can free up your own operational and development resources.

The following video presents an overview of Azure API for FHIR:

The healthcare industry is rapidly transforming health data to the emerging standard of FHIR® (Fast

Healthcare Interoperability Resources). FHIR enables a robust, extensible data model with standardized

semantics and data exchange that enables all systems using FHIR to work together. Transforming your data to

FHIR allows you to quickly connect existing data sources such as the electronic health record systems or

research databases. FHIR also enables the rapid exchange of data in modern implementations of mobile and

web development. Most importantly, FHIR can simplify data ingestion and accelerate development with

analytics and machine learning tools.

The Azure API for FHIR allows for the exchange of data via consistent, RESTful, FHIR APIs based on the HL7 FHIR

specification. Backed by a managed PaaS offering in Azure, it also provides a scalable and secure environment

for the management and storage of Protected Health Information (PHI) data in the native FHIR format.

You could invest resources building and running your own FHIR service, but with the Azure API for FHIR,

Microsoft takes on the workload of operations, maintenance, updates and compliance requirements, allowing

you to free up your own operational and development resources.

Using the Azure API for FHIR enables to you connect with any system that leverages FHIR APIs for read, write,

search, and other functions. It can be used as a powerful tool to consolidate, normalize, and apply machine

learning with clinical data from electronic health records, clinician and patient dashboards, remote monitoring

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/overview.md
https://www.hhs.gov/answers/hipaa/what-is-phi/index.html
https://www.youtube-nocookie.com/embed/5vS7Iq9vpXE
https://hl7.org/fhir

 Control Data Access at Scale

 Audit logs and tracking

 Secure your data

 Applications for a FHIR Service

 FHIR from Microsoft

 Azure IoT Connector for FHIR (preview)

programs, or with databases outside of your system that have FHIR APIs.

You control your data. Role-based access control (RBAC) enables you to manage how your data is stored and

accessed. Providing increased security and reducing administrative workload, you determine who has access to

the datasets you create, based on role definitions you create for your environment.

Quickly track where your data is going with built-in audit logs. Track access, creation, modification, and reads

within each data store.

Protect your PHI with unparalleled security intelligence. Your data is isolated to a unique database per API

instance and protected with multi-region failover. The Azure API for FHIR implements a layered, in-depth

defense and advanced threat protection for your data.

FHIR servers are key tools for interoperability of health data. The Azure API for FHIR is designed as an API and

service that you can create, deploy, and begin using quickly. As the FHIR standard expands in healthcare, use

cases will continue to grow, but some initial customer applications where Azure API for FHIR is useful are below:

Star tup/IoT and App Development: Customers developing a patient or provider centric app (mobile

or web) can leverage Azure API for FHIR as a fully managed backend service. The Azure API for FHIR

provides a valuable resource in that customers can managing data and exchanging data in a secure cloud

environment designed for health data, leverage SMART on FHIR implementation guidelines, and enable

their technology to be utilized by all provider systems (for example, most EHRs have enabled FHIR read

APIs).

Healthcare Ecosystems: While EHRs exist as the primary ‘source of truth’ in many clinical settings, it is

not uncommon for providers to have multiple databases that aren’t connected to one another or store

data in different formats. Utilizing the Azure API for FHIR as a service that sits on top of those systems

allows you to standardize data in the FHIR format. This helps to enable data exchange across multiple

systems with a consistent data format.

Research: Healthcare researchers will find the FHIR standard in general and the Azure API for FHIR

useful as it normalizes data around a common FHIR data model and reduces the workload for machine

learning and data sharing. Exchange of data via the Azure API for FHIR provides audit logs and access

controls that help control the flow of data and who has access to what data types.

FHIR capabilities from Microsoft are available in two configurations:

Azure API for FHIR – A PaaS offering in Azure, easily provisioned in the Azure portal and managed by

Microsoft.

FHIR Server for Azure – an open-source project that can be deployed into your Azure subscription, available

on GitHub at https://github.com/Microsoft/fhir-server.

For use cases that requires extending or customizing the FHIR server or require access the underlying services

—such as the database—without going through the FHIR APIs, developers should choose the open-source FHIR

Server for Azure. For implementation of a turn-key, production-ready FHIR API and backend service where

persisted data should only be accessed through the FHIR API, developers should choose the Azure API for FHIR

https://github.com/Microsoft/fhir-server

 Applications of Azure IoT Connector for FHIR (preview)

 Next Steps

Azure IoT Connector for Fast Healthcare Interoperability Resources (FHIR®)* is an optional feature of Azure API

for FHIR that provides the capability to ingest data from Internet of Medical Things (IoMT) devices. Internet of

Medical Things is a category of IoT devices that capture and exchange health & wellness data with other

healthcare IT systems over network. Some examples of IoMT devices include fitness and clinical wearables,

monitoring sensors, activity trackers, point of care kiosks, or even a smart pill. The Azure IoT Connector for FHIR

feature enables you to quickly set up a service to ingest IoMT data into Azure API for FHIR in a scalable, secure,

and compliant manner.

Azure IoT Connector for FHIR can accept any JSON-based messages sent out by an IoMT device. This data is first

transformed into appropriate FHIR-based Observation resources and then persisted into Azure API for FHIR. The

data transformation logic is defined through a pair of mapping templates that you configure based on your

message schema and FHIR requirements. Device data can be pushed directly to Azure IoT Connector for FHIR or

seamlessly used in concert with other Azure IoT solutions (Azure IoT Hub and Azure IoT Central). Azure IoT

Connector for FHIR provides a secure data pipeline while allowing the Azure IoT solutions manage provisioning

and maintenance of the physical devices.

Use of IoMT devices is rapidly expanding in healthcare and Azure IoT Connector for FHIR is designed to bridge

the gap of bringing multiple devices data with security and compliance into Azure API for FHIR. Bringing IoMT

data into a FHIR server enables holistic data insights and innovative clinical workflows. Some common scenarios

for Azure IoT Connector for FHIR are:

Remote Patient Monitor ing/Telehealth: Remote patient monitoring provides the ability to gather patient

health data outside of traditional healthcare settings. Healthcare institutions can use Azure IoT Connector for

FHIR to bring health data generated by remote devices into Azure API for FHIR. This data could be used to

closely track patients health status, monitor patients adherence to the treatment plan and provide

personalized care.

Research and L ife Sciences: Clinical trials are rapidly adopting IoMT devices like bio sensors, wearables,

mobile apps to capture trial data. These trials can harness Azure IoT Connector for FHIR to transmit device

data to Azure API for FHIR in a secure, efficient, and effective manner. Once in Azure API for FHIR, trial data

could be used to run real-time analysis of trial data.

Advanced Analytics: IoMT devices can provide large volume and variety of data at a high velocity, which

makes them a great fit for serving training and testing data for your machine learning models. Azure IoT

Connector for FHIR is inherently built to work with wide range of data frequency, flexible data schema, and

cloud scaling with low latency. These attributes make Azure IoT Connector for FHIR an excellent choice for

capturing device data for your advanced analytics needs.

Smar t Hospitals/Clinics: Today smart hospitals and clinics are setting up an infrastructure of

interconnected digital assets. Azure IoT Connector for FHIR can be used to capture and integrate data from

these connected components. Actionable insights from such data set enable better patient care and

operational efficiency.

To start working with the Azure API for FHIR, follow the 5-minute quickstart to deploy the Azure API for FHIR.

Deploy Azure API for FHIR

To try out the Azure IoT Connector for FHIR feature, check out the quickstart to deploy Azure IoT Connector for

FHIR using Azure portal.

Deploy Azure IoT Connector for FHIR

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

https://www.hl7.org/fhir/observation.html
https://docs.microsoft.com/en-us/azure/iot-hub/index
https://docs.microsoft.com/en-us/azure/iot-central/index

What is Azure API for FHIR®?
 3/11/2021 • 8 minutes to read • Edit Online

 Leveraging the power of your data with FHIR

 Securely manage health data in the cloud

 Free up your resources to innovate

 Enable interoperability with FHIR

Azure API for FHIR enables rapid exchange of data through Fast Healthcare Interoperability Resources (FHIR®)

APIs, backed by a managed Platform-as-a Service (PaaS) offering in the cloud. It makes it easier for anyone

working with health data to ingest, manage, and persist Protected Health Information PHI in the cloud:

Managed FHIR service, provisioned in the cloud in minutes

Enterprise-grade, FHIR®-based endpoint in Azure for data access, and storage in FHIR® format

High performance, low latency

Secure management of Protected Health Information (PHI) in a compliant cloud environment

SMART on FHIR for mobile and web implementations

Control your own data at scale with role-based access control (RBAC)

Audit log tracking for access, creation, modification, and reads within each data store

Azure API for FHIR allows you to create and deploy a FHIR service in just minutes to leverage the elastic scale of

the cloud. You pay only for the throughput and storage you need. The Azure services that power Azure API for

FHIR are designed for rapid performance no matter what size datasets you’re managing.

The FHIR API and compliant data store enable you to securely connect and interact with any system that utilizes

FHIR APIs. Microsoft takes on the operations, maintenance, updates, and compliance requirements in the PaaS

offering, so you can free up your own operational and development resources.

The following video presents an overview of Azure API for FHIR:

The healthcare industry is rapidly transforming health data to the emerging standard of FHIR® (Fast

Healthcare Interoperability Resources). FHIR enables a robust, extensible data model with standardized

semantics and data exchange that enables all systems using FHIR to work together. Transforming your data to

FHIR allows you to quickly connect existing data sources such as the electronic health record systems or

research databases. FHIR also enables the rapid exchange of data in modern implementations of mobile and

web development. Most importantly, FHIR can simplify data ingestion and accelerate development with

analytics and machine learning tools.

The Azure API for FHIR allows for the exchange of data via consistent, RESTful, FHIR APIs based on the HL7 FHIR

specification. Backed by a managed PaaS offering in Azure, it also provides a scalable and secure environment

for the management and storage of Protected Health Information (PHI) data in the native FHIR format.

You could invest resources building and running your own FHIR service, but with the Azure API for FHIR,

Microsoft takes on the workload of operations, maintenance, updates and compliance requirements, allowing

you to free up your own operational and development resources.

Using the Azure API for FHIR enables to you connect with any system that leverages FHIR APIs for read, write,

search, and other functions. It can be used as a powerful tool to consolidate, normalize, and apply machine

learning with clinical data from electronic health records, clinician and patient dashboards, remote monitoring

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/overview.md
https://www.hhs.gov/answers/hipaa/what-is-phi/index.html
https://www.youtube-nocookie.com/embed/5vS7Iq9vpXE
https://hl7.org/fhir

 Control Data Access at Scale

 Audit logs and tracking

 Secure your data

 Applications for a FHIR Service

 FHIR from Microsoft

 Azure IoT Connector for FHIR (preview)

programs, or with databases outside of your system that have FHIR APIs.

You control your data. Role-based access control (RBAC) enables you to manage how your data is stored and

accessed. Providing increased security and reducing administrative workload, you determine who has access to

the datasets you create, based on role definitions you create for your environment.

Quickly track where your data is going with built-in audit logs. Track access, creation, modification, and reads

within each data store.

Protect your PHI with unparalleled security intelligence. Your data is isolated to a unique database per API

instance and protected with multi-region failover. The Azure API for FHIR implements a layered, in-depth

defense and advanced threat protection for your data.

FHIR servers are key tools for interoperability of health data. The Azure API for FHIR is designed as an API and

service that you can create, deploy, and begin using quickly. As the FHIR standard expands in healthcare, use

cases will continue to grow, but some initial customer applications where Azure API for FHIR is useful are below:

Star tup/IoT and App Development: Customers developing a patient or provider centric app (mobile

or web) can leverage Azure API for FHIR as a fully managed backend service. The Azure API for FHIR

provides a valuable resource in that customers can managing data and exchanging data in a secure cloud

environment designed for health data, leverage SMART on FHIR implementation guidelines, and enable

their technology to be utilized by all provider systems (for example, most EHRs have enabled FHIR read

APIs).

Healthcare Ecosystems: While EHRs exist as the primary ‘source of truth’ in many clinical settings, it is

not uncommon for providers to have multiple databases that aren’t connected to one another or store

data in different formats. Utilizing the Azure API for FHIR as a service that sits on top of those systems

allows you to standardize data in the FHIR format. This helps to enable data exchange across multiple

systems with a consistent data format.

Research: Healthcare researchers will find the FHIR standard in general and the Azure API for FHIR

useful as it normalizes data around a common FHIR data model and reduces the workload for machine

learning and data sharing. Exchange of data via the Azure API for FHIR provides audit logs and access

controls that help control the flow of data and who has access to what data types.

FHIR capabilities from Microsoft are available in two configurations:

Azure API for FHIR – A PaaS offering in Azure, easily provisioned in the Azure portal and managed by

Microsoft.

FHIR Server for Azure – an open-source project that can be deployed into your Azure subscription, available

on GitHub at https://github.com/Microsoft/fhir-server.

For use cases that requires extending or customizing the FHIR server or require access the underlying services

—such as the database—without going through the FHIR APIs, developers should choose the open-source FHIR

Server for Azure. For implementation of a turn-key, production-ready FHIR API and backend service where

persisted data should only be accessed through the FHIR API, developers should choose the Azure API for FHIR

https://github.com/Microsoft/fhir-server

 Applications of Azure IoT Connector for FHIR (preview)

 Next Steps

Azure IoT Connector for Fast Healthcare Interoperability Resources (FHIR®)* is an optional feature of Azure API

for FHIR that provides the capability to ingest data from Internet of Medical Things (IoMT) devices. Internet of

Medical Things is a category of IoT devices that capture and exchange health & wellness data with other

healthcare IT systems over network. Some examples of IoMT devices include fitness and clinical wearables,

monitoring sensors, activity trackers, point of care kiosks, or even a smart pill. The Azure IoT Connector for FHIR

feature enables you to quickly set up a service to ingest IoMT data into Azure API for FHIR in a scalable, secure,

and compliant manner.

Azure IoT Connector for FHIR can accept any JSON-based messages sent out by an IoMT device. This data is first

transformed into appropriate FHIR-based Observation resources and then persisted into Azure API for FHIR. The

data transformation logic is defined through a pair of mapping templates that you configure based on your

message schema and FHIR requirements. Device data can be pushed directly to Azure IoT Connector for FHIR or

seamlessly used in concert with other Azure IoT solutions (Azure IoT Hub and Azure IoT Central). Azure IoT

Connector for FHIR provides a secure data pipeline while allowing the Azure IoT solutions manage provisioning

and maintenance of the physical devices.

Use of IoMT devices is rapidly expanding in healthcare and Azure IoT Connector for FHIR is designed to bridge

the gap of bringing multiple devices data with security and compliance into Azure API for FHIR. Bringing IoMT

data into a FHIR server enables holistic data insights and innovative clinical workflows. Some common scenarios

for Azure IoT Connector for FHIR are:

Remote Patient Monitor ing/Telehealth: Remote patient monitoring provides the ability to gather patient

health data outside of traditional healthcare settings. Healthcare institutions can use Azure IoT Connector for

FHIR to bring health data generated by remote devices into Azure API for FHIR. This data could be used to

closely track patients health status, monitor patients adherence to the treatment plan and provide

personalized care.

Research and L ife Sciences: Clinical trials are rapidly adopting IoMT devices like bio sensors, wearables,

mobile apps to capture trial data. These trials can harness Azure IoT Connector for FHIR to transmit device

data to Azure API for FHIR in a secure, efficient, and effective manner. Once in Azure API for FHIR, trial data

could be used to run real-time analysis of trial data.

Advanced Analytics: IoMT devices can provide large volume and variety of data at a high velocity, which

makes them a great fit for serving training and testing data for your machine learning models. Azure IoT

Connector for FHIR is inherently built to work with wide range of data frequency, flexible data schema, and

cloud scaling with low latency. These attributes make Azure IoT Connector for FHIR an excellent choice for

capturing device data for your advanced analytics needs.

Smar t Hospitals/Clinics: Today smart hospitals and clinics are setting up an infrastructure of

interconnected digital assets. Azure IoT Connector for FHIR can be used to capture and integrate data from

these connected components. Actionable insights from such data set enable better patient care and

operational efficiency.

To start working with the Azure API for FHIR, follow the 5-minute quickstart to deploy the Azure API for FHIR.

Deploy Azure API for FHIR

To try out the Azure IoT Connector for FHIR feature, check out the quickstart to deploy Azure IoT Connector for

FHIR using Azure portal.

Deploy Azure IoT Connector for FHIR

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

https://www.hl7.org/fhir/observation.html
https://docs.microsoft.com/en-us/azure/iot-hub/index
https://docs.microsoft.com/en-us/azure/iot-central/index

Quickstart: Deploy Azure API for FHIR using Azure
portal

 3/11/2021 • 2 minutes to read • Edit Online

 Create new resource

 Search for Azure API for FHIR

In this quickstart, you'll learn how to deploy Azure API for FHIR using the Azure portal.

If you don't have an Azure subscription, create a free account before you begin.

Open the Azure portal and click Create a resource

You can find Azure API for FHIR by typing "FHIR" into the search box:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-portal-quickstart.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com

 Create Azure API for FHIR account

 Enter account details

Select Create to create a new Azure API for FHIR account:

Select an existing resource group or create a new one, choose a name for the account, and finally click Review

+ create:

 Additional settings (optional)

Confirm creation and await FHIR API deployment.

You can also click Next: Additional settings to view the authentication settings. The default configuration for

the Azure API for FHIR is to use Azure RBAC for assigning data plane roles. When configured in this mode, the

"Authority" for the FHIR service will be set to the Azure Active Directory tenant of the subscription:

 Fetch FHIR API capability statement

 Clean up resources

 Next steps

Notice that the box for entering allowed object IDs is grayed out, since we use Azure RBAC for configuring role

assignments in this case.

If you wish to configure the FHIR service to use an external or secondary Azure Active Directory tenant, you can

change the Authority and enter object IDs for user and groups that should be allowed access to the server. For

more information, see the local RBAC configuration guide.

To validate that the new FHIR API account is provisioned, fetch a capability statement by pointing a browser to

https://<ACCOUNT-NAME>.azurehealthcareapis.com/metadata .

When no longer needed, you can delete the resource group, Azure API for FHIR, and all related resources. To do

so, select the resource group containing the Azure API for FHIR account, select Delete resource group, then

confirm the name of the resource group to delete.

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings

in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the

Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

Quickstart: Deploy Azure API for FHIR using
PowerShell

 5/28/2021 • 2 minutes to read • Edit Online

 Use Azure Cloud Shell

O P T IO N EXA M P L E/ L IN K

Select Tr y It in the upper-right corner of a code block.
Selecting Tr y It doesn't automatically copy the code to
Cloud Shell.

Go to https://shell.azure.com, or select the Launch Cloud
Shell button to open Cloud Shell in your browser.

Select the Cloud Shell button on the menu bar at the
upper right in the Azure portal.

NOTE

 Register the Azure API for FHIR resource provider

In this quickstart, you'll learn how to deploy Azure API for FHIR using PowerShell.

If you don't have an Azure subscription, create a free account before you begin.

Azure hosts Azure Cloud Shell, an interactive shell environment that you can use through your browser. You can

use either Bash or PowerShell with Cloud Shell to work with Azure services. You can use the Cloud Shell

preinstalled commands to run the code in this article without having to install anything on your local

environment.

To start Azure Cloud Shell:

To run the code in this article in Azure Cloud Shell:

1. Start Cloud Shell.

2. Select the Copy button on a code block to copy the code.

3. Paste the code into the Cloud Shell session by selecting Ctr l +Shift+V on Windows and Linux or by

selecting Cmd+Shift+V on macOS.

4. Select Enter to run the code.

This article has been updated to use the Azure Az PowerShell module. The Az PowerShell module is the recommended

PowerShell module for interacting with Azure. To get started with the Az PowerShell module, see Install Azure PowerShell.

To learn how to migrate to the Az PowerShell module, see Migrate Azure PowerShell from AzureRM to Az.

If the Microsoft.HealthcareApis resource provider is not already registered for your subscription, you can

register it with:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-powershell-quickstart.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://shell.azure.com
https://shell.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/migrate-from-azurerm-to-az

Register-AzResourceProvider -ProviderNamespace Microsoft.HealthcareApis

 Create Azure resource group

New-AzResourceGroup -Name "myResourceGroupName" -Location westus2

 Deploy Azure API for FHIR

New-AzHealthcareApisService -Name nameoffhirservice -ResourceGroupName myResourceGroupName -Location westus2
-Kind fhir-R4

NOTE

 Fetch capability statement

$metadata = Invoke-WebRequest -Uri "https://nameoffhirservice.azurehealthcareapis.com/metadata"
$metadata.RawContent

 Clean up resources

Remove-AzResourceGroup -Name myResourceGroupName

 Next steps

Depending on the version of the Az PowerShell module you have installed, the provisioned FHIR server may be

configured to use local RBAC and have the currently signed in PowerShell user set in the list of allowed identity object IDs

for the deployed FHIR service. Going forward, we recommend that you use Azure RBAC for assigning data plane roles and

you may need to delete this users object ID after deployment to enable Azure RBAC mode.

You'll be able to validate that the Azure API for FHIR account is running by fetching a FHIR capability statement:

If you're not going to continue to use this application, delete the resource group with the following steps:

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings

in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the

Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

Quickstart: Deploy Azure API for FHIR using Azure
CLI

 3/11/2021 • 2 minutes to read • Edit Online

 Prerequisites

 Add HealthcareAPIs extension

az extension add --name healthcareapis

az healthcareapis --help

 Create Azure Resource Group

az group create --name "myResourceGroup" --location westus2

 Deploy the Azure API for FHIR

az healthcareapis create --resource-group myResourceGroup --name nameoffhiraccount --kind fhir-r4 --location
westus2

 Fetch FHIR API capability statement

In this quickstart, you'll learn how to deploy Azure API for FHIR in Azure using the Azure CLI.

If you don't have an Azure subscription, create a free account before you begin.

Use the Bash environment in Azure Cloud Shell.

If you prefer, install the Azure CLI to run CLI reference commands.

If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish

the authentication process, follow the steps displayed in your terminal. For additional sign-in

options, see Sign in with the Azure CLI.

When you're prompted, install Azure CLI extensions on first use. For more information about

extensions, see Use extensions with the Azure CLI.

Run az version to find the version and dependent libraries that are installed. To upgrade to the

latest version, run az upgrade.

Get a list of commands for HealthcareAPIs:

Pick a name for the resource group that will contain the Azure API for FHIR and create it:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-cli-quickstart.md
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index#az_login
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/azure-cli-extensions-overview
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_version
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_upgrade

curl --url "https://nameoffhiraccount.azurehealthcareapis.com/metadata"

 Clean up resources

az group delete --name "myResourceGroup"

 Next steps

Obtain a capability statement from the FHIR API with:

If you're not going to continue to use this application, delete the resource group with the following steps:

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings

in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the

Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

Quickstart: Use an ARM template to deploy Azure
API for FHIR

 5/28/2021 • 6 minutes to read • Edit Online

 Prerequisites

 Review the template

In this quickstart, you'll learn how to use an Azure Resource Manager template (ARM template) to deploy Azure

API for Fast Healthcare Interoperability Resources (FHIR®). You can deploy Azure API for FHIR through the

Azure portal, PowerShell, or CLI.

An ARM template is a JavaScript Object Notation (JSON) file that defines the infrastructure and configuration for

your project. The template uses declarative syntax. In declarative syntax, you describe your intended deployment

without writing the sequence of programming commands to create the deployment.

If your environment meets the prerequisites and you're familiar with using ARM templates, select the Deploy to

Azure button. The template will open in the Azure portal once you sign in.

Portal

PowerShell

CLI

An Azure account with an active subscription. Create one for free.

The template used in this quickstart is from Azure Quickstart Templates.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-paas-arm-template-quickstart.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://portal.azure.com/#create/Microsoft.Template/uri/https%253a%252f%252fraw.githubusercontent.com%252fAzure%252fazure-quickstart-templates%252fmaster%252fquickstarts%252fmicrosoft.healthcareapis%252fazure-api-for-fhir%252fazuredeploy.json
https://azure.microsoft.com/free/
https://azure.microsoft.com/resources/templates/101-azure-api-for-fhir/

{
 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "serviceName": {
 "type": "string",
 "metadata": {
 "description": "The name of the service."
 }
 },
 "location": {
 "type": "string",
 "allowedValues": [
 "australiaeast",
 "eastus",
 "eastus2",
 "japaneast",
 "northcentralus",
 "northeurope",
 "southcentralus",
 "southeastasia",
 "uksouth",
 "ukwest",
 "westcentralus",
 "westeurope",
 "westus2"
],
 "metadata": {
 "description": "Location of Azure API for FHIR"
 }
 }
 },
 "resources": [
 {
 "type": "Microsoft.HealthcareApis/services",
 "apiVersion": "2020-03-15",
 "name": "[parameters('serviceName')]",
 "location": "[parameters('location')]",
 "kind": "fhir-R4",
 "properties": {
 "authenticationConfiguration": {
 "audience": "[concat('https://', parameters('serviceName'), '.azurehealthcareapis.com')]",
 "authority": "[uri(environment().authentication.loginEndpoint, subscription().tenantId)]"
 }
 }
 }
]
}

 Deploy the template

The template defines one Azure resource:

Microsoft.HealthcareApis/ser vices

Portal

PowerShell

CLI

Select the following link to deploy the Azure API for FHIR using the ARM template in the Azure portal:

https://portal.azure.com/#create/Microsoft.Template/uri/https%253a%252f%252fraw.githubusercontent.com%252fAzure%252fazure-quickstart-templates%252fmaster%252fquickstarts%252fmicrosoft.healthcareapis%252fazure-api-for-fhir%252fazuredeploy.json

NOTE

 Review deployed resources

On the Deploy Azure API for FHIR page:

1. If you want, change the Subscr iption from the default to a different subscription.

2. For Resource group, select Create new , enter a name for the new resource group, and select OK.

3. If you created a new resource group, select a Region for the resource group.

4. Enter a new Ser vice Name and choose the Location of the Azure API for FHIR. The location can be the

same as or different from the region of the resource group.

5. Select Review + create.

6. Read the terms and conditions, and then select Create.

The deployment takes a few minutes to complete. Note the names for the Azure API for FHIR service and the resource

group, which you use to review the deployed resources later.

 Clean up resources

 Next steps

Portal

PowerShell

CLI

Follow these steps to see an overview of your new Azure API for FHIR service:

1. In the Azure portal, search for and select Azure API for FHIR .

2. In the FHIR list, select your new service. The Over view page for the new Azure API for FHIR service

appears.

3. To validate that the new FHIR API account is provisioned, select the link next to FHIR metadata

endpoint to fetch the FHIR API capability statement. The link has a format of

https://<service-name>.azurehealthcareapis.com/metadata . If the account is provisioned, a large JSON file

is displayed.

When it's no longer needed, delete the resource group, which deletes the resources in the resource group.

Portal

PowerShell

CLI

1. In the Azure portal, search for and select Resource groups .

2. In the resource group list, choose the name of your resource group.

3. In the Over view page of your resource group, select Delete resource group.

4. In the confirmation dialog box, type the name of your resource group, and then select Delete.

For a step-by-step tutorial that guides you through the process of creating an ARM template, see the tutorial to

create and deploy your first ARM template

In this quickstart guide, you've deployed the Azure API for FHIR into your subscription. To set additional settings

in your Azure API for FHIR, proceed to the additional settings how-to guide. If you are ready to start using the

Azure API for FHIR, read more on how to register applications.

Additional settings in Azure API for FHIR

Register Applications Overview

https://portal.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-template

Quickstart: Deploy Azure IoT Connector for FHIR
(preview) using Azure portal

 4/5/2021 • 6 minutes to read • Edit Online

 Prerequisites

 Go to Azure API for FHIR resource

Azure IoT Connector for Fast Healthcare Interoperability Resources (FHIR®)* is an optional feature of Azure API

for FHIR that provides the capability to ingest data from Internet of Medical Things (IoMT) devices. During the

preview phase, Azure IoT Connector for FHIR feature is being available for free. In this quickstart, you'll learn

how to:

Deploy and configure Azure IoT Connector for FHIR using the Azure portal

Use a simulated device to send data to Azure IoT Connector for FHIR

View resources created by Azure IoT Connector for FHIR on Azure API for FHIR

An active Azure subscription - Create one for free

Azure API for FHIR resource - Deploy Azure API for FHIR using Azure portal

Open the Azure portal and go to the Azure API for FHIR resource for which you'd like to create the Azure IoT

Connector for FHIR feature.

On the left-hand navigation menu, click on IoT Connector (preview) under the Add-ins section to open the

IoT Connectors page.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-fhir-portal-quickstart.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-azure-api-fhir.jpg#lightbox

 Create new Azure IoT Connector for FHIR (preview)

NOTE

Click on the Add button to open the Create IoT Connector page.

Enter settings for the new Azure IoT Connector for FHIR. Click on Create button and await Azure IoT Connector

for FHIR deployment.

Must select Create as the value for the Resolution type drop down for this installation.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connectors.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connectors-add.jpg#lightbox

SET T IN G VA L UE DESC RIP T IO N

Connector name A unique name Enter a name to identify your Azure
IoT Connector for FHIR This name
should be unique within an Azure API
for FHIR resource. The name can only
contain lowercase letters, numbers,
and the hyphen (-) character. It must
start and end with a letter or a
number, and must be between 3-24
characters in length.

Resolution type Lookup or Create Select Lookup if you have an out-of-
band process to create Device and
Patient FHIR resources in your Azure
API for FHIR. Azure IoT Connector for
FHIR will use reference to these
resources when creating an
Observation FHIR resource to
represent the device data. Select
Create when you want Azure IoT
Connector for FHIR to create bare-
bones Device and Patient resources in
your Azure API for FHIR using
respective identifier values present in
the device data.

Once installation is complete, the newly created Azure IoT Connector for FHIR will show up on the IoT

Connectors page.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-create.jpg#lightbox
https://www.hl7.org/fhir/device.html
https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/observation.html

 Configure Azure IoT Connector for FHIR (preview)
Azure IoT Connector for FHIR needs two mapping templates to transform device messages into FHIR-based

Observation resource(s): device mapping and FHIR mapping. Your Azure IoT Connector for FHIR isn't fully

operational until these mappings are uploaded.

To upload mapping templates, click on the newly deployed Azure IoT Connector for FHIR to go to the IoT

Connector page.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-created.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-missing-mappings.jpg#lightbox

 Device mapping

Device mapping template transforms device data into a normalized schema. On the IoT Connector page, click

on Configure device mapping button to go to the Device mapping page.

On the Device mapping page, add the following script to the JSON editor and click Save.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click-device-mapping.jpg#lightbox

{
 "templateType": "CollectionContent",
 "template": [
 {
 "templateType": "IotJsonPathContent",
 "template": {
 "typeName": "heartrate",
 "typeMatchExpression": "$..[?(@Body.telemetry.HeartRate)]",
 "patientIdExpression": "$.Properties.iotcentral-device-id",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.Body.telemetry.HeartRate",
 "valueName": "hr"
 }
]
 }
 }
]
}

 FHIR mapping

FHIR mapping template transforms a normalized message to a FHIR-based Observation resource. On the IoT

Connector page, click on Configure FHIR mapping button to go to the FHIR mapping page.

On the FHIR mapping page, add the following script to the JSON editor and click Save.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-device-mapping.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click-fhir-mapping.jpg#lightbox

{
 "templateType": "CollectionFhir",
 "template": [
 {
 "templateType": "CodeValueFhir",
 "template": {
 "codes": [
 {
 "code": "8867-4",
 "system": "http://loinc.org",
 "display": "Heart rate"
 }
],
 "periodInterval": 0,
 "typeName": "heartrate",
 "value": {
 "unit": "count/min",
 "valueName": "hr",
 "valueType": "Quantity"
 }
 }
 }
]
}

 Generate a connection string
IoMT device needs a connection string to connect and send messages to Azure IoT Connector for FHIR. On the

IoT Connector page for the newly deployed Azure IoT Connector for FHIR, select Manage client

connections button.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-fhir-mapping.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-click-client-connections.jpg#lightbox

 Connect your devices to IoT

Once on Connections page, click on Add button to create a new connection.

Provide a friendly name for this connection on the overlay window and select the Create button.

Select the newly created connection from the Connections page and copy the value of Pr imar y connection

str ing field from the overlay window on the right.

Preserve this connection string to be used at a later step.

Azure offers an extensive suite of IoT products to connect and manage your IoT devices. You can build your own

solution based on PaaS using Azure IoT Hub, or start with a manage IoT apps platform with Azure IoT Central.

For this tutorial, we'll leverage Azure IoT Central, which has industry-focused solution templates to help you get

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connections.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-new-connection.jpg#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connection-string.jpg#lightbox

NOTE

 Connect your IoT data with the Azure IoT Connector for FHIR
(preview)

NOTE

started.

Deploy the Continuous patient monitoring application template. This template includes two simulated devices

producing real-time data to help you get started: Smar t Vitals Patch and Smar t Knee Brace .

Whenever your real devices are ready, you can use same IoT Central application to onboard your devices and replace

device simulators. Your device data will automatically start flowing to FHIR as well.

Once you've deployed your IoT Central application, your two out-of-the-box simulated devices will start

generating telemetry. For this tutorial, we'll ingest the telemetry from Smart Vitals Patch simulator into FHIR via

the Azure IoT Connector for FHIR. To export your IoT data to the Azure IoT Connector for FHIR, we'll want to set

up a continuous data export within IoT Central. We'll first need to create a connection to the destination, and

then we'll create a data export job to continuously run:

You will want to select Data expor t vs. Data expor t (legacy) within the IoT Central App settings for this section.

Create a new destination:

Go to the Destinations tab and create a new destination.

Start by giving your destination a unique name.

Pick Azure Event Hubs as the destination type.

Provide Azure IoT Connector for FHIR's connection string obtained in a previous step for the Connection

str ing field.

Create a new data export:

Once you've created your destination, go over to the Expor ts tab and create a new data export.

Start by giving it the data export a unique name.

https://docs.microsoft.com/en-us/azure/iot-central/healthcare/tutorial-continuous-patient-monitoring
https://docs.microsoft.com/en-us/azure/iot-central/core/howto-set-up-template
https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/iot-central-data-export-dashboard.png#lightbox

 View device data in Azure API for FHIR

TIP

 Clean up resources

 Next steps

Under Data select Telemetry as the Type of data to export.

Under Destination select the destination name you created in the previous name.

You can view the FHIR-based Observation resource(s) created by Azure IoT Connector for FHIR on Azure API for

FHIR using Postman. Set up your Postman to access Azure API for FHIR and make a GET request to

https://your-fhir-server-url/Observation?code=http://loinc.org|8867-4 to view Observation FHIR resources

with heart rate value.

Ensure that your user has appropriate access to Azure API for FHIR data plane. Use Azure role-based access control

(Azure RBAC) to assign required data plane roles.

When no longer needed, you can delete an instance of Azure IoT Connector for FHIR by removing the associated

resource group, or the associated Azure API for FHIR service, or the Azure IoT Connector for FHIR instance itself.

To directly remove an Azure IoT Connector for FHIR instance, select the instance from IoT Connectors page to

go to IoT Connector page and click on Delete button. Select Yes when asked for confirmation.

In this quickstart guide, you've deployed Azure IoT Connector for FHIR feature in your Azure API for FHIR

resource. Select from below next steps to learn more about Azure IoT Connector for FHIR:

Understand different stages of data flow within Azure IoT Connector for FHIR.

Azure IoT Connector for FHIR data flow

Learn how to configure IoT Connector using device and FHIR mapping templates.

Azure IoT Connector for FHIR mapping templates

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/quickstart-iot-fhir-portal/portal-iot-connector-delete.jpg#lightbox

Quickstart: Use an Azure Resource Manager (ARM)
template to deploy Azure IoT Connector for FHIR
(preview)

 5/28/2021 • 11 minutes to read • Edit Online

 Prerequisites

 Review the template

 Deploy the template

In this quickstart, you'll learn how to use an Azure Resource Manager template (ARM template) to deploy Azure

IoT Connector for Fast Healthcare Interoperability Resources (FHIR®)*, a feature of Azure API for FHIR. To

deploy a working instance of Azure IoT Connector for FHIR, this template also deploys a parent Azure API for

FHIR service and an Azure IoT Central application that exports telemetry from a device simulator to Azure IoT

Connector for FHIR. You can execute ARM template to deploy Azure IoT Connector for FHIR through the Azure

portal, PowerShell, or CLI.

An ARM template is a JavaScript Object Notation (JSON) file that defines the infrastructure and configuration for

your project. The template uses declarative syntax. In declarative syntax, you describe your intended deployment

without writing the sequence of programming commands to create the deployment.

If your environment meets the prerequisites and you're familiar with using ARM templates, select the Deploy to

Azure button. The template will open in the Azure portal once you sign in.

Portal

PowerShell

CLI

An Azure account with an active subscription. Create one for free.

The template defines following Azure resources:

Microsoft.HealthcareApis/ser vices

Microsoft.HealthcareApis/ser vices/iomtconnectors

Microsoft.IoTCentral/IoTApps

Portal

PowerShell

CLI

Select the following link to deploy the Azure IoT Connector for FHIR using the ARM template in the Azure portal:

On the Deploy Azure API for FHIR page:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-fhir-arm-template-quickstart.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://portal.azure.com/#create/Microsoft.Template/uri/https%253A%252F%252Fraw.githubusercontent.com%252Fmicrosoft%252Fiomt-fhir%252Fmaster%252Fdeploy%252Ftemplates%252Fmanaged%252Fazuredeploy.json
https://azure.microsoft.com/free/
https://raw.githubusercontent.com/microsoft/iomt-fhir/master/deploy/templates/managed/azuredeploy.json
https://portal.azure.com/#create/Microsoft.Template/uri/https%253A%252F%252Fraw.githubusercontent.com%252Fmicrosoft%252Fiomt-fhir%252Fmaster%252Fdeploy%252Ftemplates%252Fmanaged%252Fazuredeploy.json

NOTE

 Review deployed resources

1. If you want, change the Subscr iption from the default to a different subscription.

2. For Resource group, select Create new , enter a name for the new resource group, and select OK.

3. If you created a new resource group, select a Region for the resource group.

4. Enter a name for your new Azure API for FHIR instance in FHIR Ser vice Name .

5. Choose the Location for your Azure API for FHIR. The location can be the same as or different from the

region of the resource group.

6. Provide a name for your Azure IoT Connector for FHIR instance in Iot Connector Name.

7. Provide a name for a connection created within Azure IoT Connector for FHIR in Connection Name. This

connection is used by Azure IoT Central application to push simulated device telemetry into Azure IoT

Connector for FHIR.

8. Enter a name for your new Azure IoT Central application in Iot Central Name. This application will use

Continuous patient monitoring template to simulate a device.

9. Choose the location of your IoT Central application from IoT Central Location drop-down.

10. Select Review + create.

11. Read the terms and conditions, and then select Create.

The deployment takes a few minutes to complete. Note the names for the Azure API for FHIR service, Azure IoT Central

application, and the resource group, which you use to review the deployed resources later.

Portal

PowerShell

CLI

Follow these steps to see an overview of your new Azure API for FHIR service:

1. In the Azure portal, search for and select Azure API for FHIR .

2. In the FHIR list, select your new service. The Over view page for the new Azure API for FHIR service

appears.

3. To validate that the new FHIR API account is provisioned, select the link next to FHIR metadata

endpoint to fetch the FHIR API capability statement. The link has a format of

https://<service-name>.azurehealthcareapis.com/metadata . If the account is provisioned, a large JSON file

is displayed.

4. To validate that the new Azure IoT Connector for FHIR is provisioned, select the IoT Connector

(preview) from left navigation menu to open the IoT Connectors page. The page must show the

provisioned Azure IoT Connector for FHIR with Status value as Online, Connections value as 1, and both

Device mapping and FHIR mapping show Success icon.

5. In the Azure portal, search for and select IoT Central Applications .

6. In the list of IoT Central Applications, select your new service. The Over view page for the new IoT Central

application appears.

https://portal.azure.com
https://portal.azure.com

 Connect your IoT data with the Azure IoT Connector for FHIR
(preview)

IMPORTANT

 View device data in Azure API for FHIR

TIP

 Clean up resources

The Device mapping template provided in this guide is designed to work with Data Export (legacy) within IoT Central.

IoT Central application currently doesn't provide ARM template or PowerShell and CLI commands to set data

export. So, follow the instructions below using Azure portal.

Once you've deployed your IoT Central application, your two out-of-the-box simulated devices will start

generating telemetry. For this tutorial, we'll ingest the telemetry from Smart Vitals Patch simulator into FHIR via

the Azure IoT Connector for FHIR. To export your IoT data to the Azure IoT Connector for FHIR, we'll want to set

up a Data export (legacy) within IoT Central. On the Data export (legacy) page:

Pick Azure Event Hubs as the export destination.

Select Use a connection string value for Event Hubs namespace field.

Provide Azure IoT Connector for FHIR's connection string obtained in a previous step for the Connection

Str ing field.

Keep Telemetr y option On for Data to Expor t field.

You can view the FHIR-based Observation resource(s) created by Azure IoT Connector for FHIR on your FHIR

server using Postman. Set up your Postman to access Azure API for FHIR and make a GET request to

https://your-fhir-server-url/Observation?code=http://loinc.org|8867-4 to view Observation FHIR resources

with heart rate value.

Ensure that your user has appropriate access to Azure API for FHIR data plane. Use Azure role-based access control

(Azure RBAC) to assign required data plane roles.

When it's no longer needed, delete the resource group, which deletes the resources in the resource group.

Portal

PowerShell

CLI

1. In the Azure portal, search for and select Resource groups .

2. In the resource group list, choose the name of your resource group.

3. In the Over view page of your resource group, select Delete resource group.

4. In the confirmation dialog box, type the name of your resource group, and then select Delete.

For a step-by-step tutorial that guides you through the process of creating an ARM template, see the tutorial to

create and deploy your first ARM template

https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data-legacy
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-template

Next steps
In this quickstart guide, you've deployed Azure IoT Connector for FHIR feature in your Azure API for FHIR

resource. Select from below next steps to learn more about Azure IoT Connector for FHIR:

Understand different stages of data flow within Azure IoT Connector for FHIR.

Azure IoT Connector for FHIR data flow

Learn how to configure IoT Connector using device and FHIR mapping templates.

Azure IoT Connector for FHIR mapping templates

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Deploy JavaScript app to read data from FHIR
service

 3/11/2021 • 2 minutes to read • Edit Online

 Prerequisites

NOTE

 Deploy Azure API for FHIR

 Next Steps

In this tutorial, you will deploy a small JavaScript app, which reads data from a FHIR service. The steps in this

tutorial are:

1. Deploy a FHIR server

2. Register a public client application

3. Test access to the application

4. Create a web application that reads this FHIR data

Before starting this set of tutorials, you will need the following items:

1. An Azure subscription

2. An Azure Active Directory tenant

3. Postman installed

For this tutorial, the FHIR service, Azure AD application, and Azure AD users are all in the same Azure AD tenant. If this is

not the case, you can still follow along with this tutorial, but may need to dive into some of the referenced documents to

do additional steps.

The first step in the tutorial is to get your Azure API for FHIR setup correctly.

1. If you haven't already, deploy the Azure API for FHIR.

2. Once you have your Azure API for FHIR deployed, configure the CORS settings by going to your Azure API

for FHIR and selecting CORS.

a. Set Origins to *

b. Set Headers to *

c. Under Methods , choose Select all

d. Set the Max age to 600

Now that you have your Azure API for FHIR deployed, you are ready to register a public client application.

Register public client application

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-fhir-server.md
https://www.getpostman.com/

Client application registration
 3/11/2021 • 2 minutes to read • Edit Online

 Client application settings

In the previous tutorial, you deployed and set up your Azure API for FHIR. Now that you have your Azure API for

FHIR setup, we will register a public client application. You can read through the full register a public client app

how-to guide for more details or troubleshooting, but we have called out the major steps for this tutorial below.

1. Navigate to Azure Active Directory

2. Select App Registration --> New Registration

3. Name your application

4. Select Public client/native (mobile & desktop) and set the redirect URI to

https://www.getpostman.com/oauth2/callback .

Once your client application is registered, copy the Application (client) ID and the Tenant ID from the Overview

Page. You will need these two values later when accessing the client.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-public-app-reg.md

 Connect with web app

 Add API permissions

If you have written your web app to connect with the Azure API for FHIR, you also need to set the correct

authentication options.

1. In the left menu, under Manage, select Authentication.

2. To add a new platform configuration, select Web.

3. Set up the redirect URI in preparation for when you create your web application in the fourth part of this

tutorial. To do this, add https://\<WEB-APP-NAME>.azurewebsites.net to the redirect URI list. If you choose a

different name during the step where you write your web app, you will need to come back and update

this.

4. Select the Access Token and ID token check boxes.

Now that you have setup the correct authentication, set the API permissions:

1. Select API permissions and click Add a permission.

2. Under APIs my organization uses , search for Azure Healthcare APIs.

3. Select user_impersonation and click add permissions .

 Next Steps
You now have a public client application. In the next tutorial, we will walk through testing and gaining access to

this application through Postman.

Test client application in Postman

Testing the FHIR API
 3/11/2021 • 2 minutes to read • Edit Online

 Retrieve capability statement

 Get patient from FHIR server

In the previous two steps, you deployed the Azure API for FHIR and registered your client application. You are

now ready to test that your Azure API for FHIR is set up with your client application.

First we will get the capability statement for your Azure API for FHIR.

1. Open Postman

2. Retrieve the capability statement by doing GET https://<FHIR-SERVER-

NAME>.azurehealthcareapis.com/metadata. In the image below the FHIR server name is fhirser ver .

Next we will attempt to retrieve a patient. To retrieve a patient, enter GET https://<FHIR-SERVER-

NAME>.azurehealthcareapis.com/Patient. You will receive a 401 Unauthorized error. This error is because you

haven't proven that you should have access to patient data.

In order to gain access, you need an access token.

1. In Postman, select Authorization and set the Type to OAuth2.0

2. Select Get New Access Token

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-test-postman.md

F IEL D VA L UE

Token Name A name for your token

Grant Type Authorization Code

Callback URL https://www.getpostman.com/oauth2/callback

Auth URL https://login.microsoftonline.com/<AZURE-AD-TENANT-
ID>/oauth2/?resource=https://<FHIR-SERVER-
NAME>.azurehealthcareapis.com

Access Token URL https://login.microsoftonline.com/<AZURE-AD-TENANT-
ID>/oauth2/token

Client ID The client ID that you copied during the previous steps

Client Secret <BLANK>

Scope <BLANK>

State 1234

Client Authentication Send client credentials in body

 Post patient into FHIR server

3. Fill in the fields and select Request Token. Below you can see the values for each field for this tutorial.

4. Sign in with your credentials and select Accept

5. Scroll down on the result and select Use Token

6. Select Send again at the top and this time you should get a result

Now you have access, you can create a new patient. Here is a sample of a simple patient you can add into your

FHIR server. Enter the code below into the Body section of Postman.

 {
 "resourceType": "Patient",
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Kirk",
 "given": [
 "James",
 "Tiberious"
]
 },
 {
 "use": "usual",
 "given": [
 "Jim"
]
 }
],
 "gender": "male",
 "birthDate": "1960-12-25"
 }

 Troubleshooting access issues

This POST will create a new patient in your FHIR server with the name James Tiberious Kirk.

If you do the GET step above to retrieve a patient again, you will see James Tiberious Kirk listed in the output.

If you ran into issues during any of these steps, review the documents we have put together on Azure Active

Directory and the Azure API for FHIR.

Azure AD and Azure API for FHIR - This document outlines some of the basic principles of Azure Active

Directory and how it interacts with the Azure API for FHIR.

Access token validation - This how-to guide gives more specific details on access token validation and steps

to take to resolve access issues.

Next Steps
Now that you can successfully connect to your client application, you are ready to write your web application.

Write a web application

Write Azure web application to read FHIR data
 3/11/2021 • 2 minutes to read • Edit Online

 Create web application

Now that you are able to connect to your FHIR server and POST data, you are ready to write a web application

that will read FHIR data. In this final step of the tutorial, we will walk through writing and accessing the web

application.

In Azure, select Create a resource and select Web App. Make sure to name your web application whatever

you specified in the redirect URI for your client application or go back and update the redirect URI with the new

name.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-web-app-write-web-app.md

Once the web application is available, Go to resource. Select App Ser vice Editor (Preview) under

Development Tools on the right and then select Go. Selecting Go will open up the App Service Editor. Right click

in the grey space under Explore and create a new file called index.html .

<!DOCTYPE html>
<html>

<head>
 <title>FHIR Patient browser sample app</title>
 <script src="https://secure.aadcdn.microsoftonline-p.com/lib/1.0.0/js/msal.js"></script>
</head>

<body>
 <div class="leftContainer">
 <p id="WelcomeMessage">Welcome to the FHIR Patient browsing sample Application</p>
 <button id="SignIn" onclick="signIn()">Sign In</button>
 </div>

 <div id="patientTable">
 </div>

 <script>
 var msalConfig = {
 auth: {
 clientId: '<CLIENT-ID>',
 authority: "https://login.microsoftonline.com/<AZURE-AD-TENANT-ID>"
 },
 cache: {
 cacheLocation: "localStorage",
 storeAuthStateInCookie: true
 }
 }

 var FHIRConfig = {
 FHIRendpoint: "https://<FHIR-SERVER-NAME>.azurehealthcareapis.com"
 }
 var requestObj = {
 scopes: ["https://<FHIR-SERVER-NAME>.azurehealthcareapis.com/user_impersonation"]
 }

 function authRedirectCallBack(error, response) {
 if (error) {
 console.log(error);
 } else {
 if (response.tokenType === "access_token") {
 callFHIRServer(FHIRConfig.FHIRendpoint + '/Patient', 'GET', null, response.accessToken,
FHIRCallback);
 }
 }
 }

 var myMSALObj = new Msal.UserAgentApplication(msalConfig);
 myMSALObj.handleRedirectCallback(authRedirectCallBack);

 function signIn() {
 myMSALObj.loginPopup(requestObj).then(function (loginResponse) {
 showWelcomeMessage();
 acquireTokenPopupAndCallFHIRServer();
 }).catch(function (error) {
 console.log(error);
 })

Below is the code that you can input into index.html . You will need to update the following items:

clientId - Update with your client application ID. This ID will be the same ID you pulled when retrieving your

token

authority - Update with your Azure AD tenant ID

FHIRendpoint - Update the FHIRendpoint to have your FHIR service name

scopes - Update to reflect the full URL for your audience

 }

 function showWelcomeMessage() {
 var divWelcome = document.getElementById('WelcomeMessage');
 divWelcome.innerHTML = "Welcome " + myMSALObj.getAccount().userName + " to FHIR Patient Browsing
App";
 var loginbutton = document.getElementById('SignIn');
 loginbutton.innerHTML = 'Sign Out';
 loginbutton.setAttribute('onclick', 'signOut()')
 }

 function signOut() {
 myMSALObj.logout();
 }

 function acquireTokenPopupAndCallFHIRServer() {
 myMSALObj.acquireTokenSilent(requestObj).then(function (tokenResponse) {
 callFHIRServer(FHIRConfig.FHIRendpoint + '/Patient', 'GET', null, tokenResponse.accessToken,
FHIRCallback);
 }).catch(function (error) {
 console.log(error);
 if (requiresInteraction(error.errorCode)) {
 myMSALObj.acquireTokenPopup(requestObj).then(function (tokenResponse) {
 callFHIRServer(FHIRConfig.FHIRendpoint + '/Patient', 'GET', null,
tokenResponse.accessToken, FHIRCallback);
 }).catch(function (error) {
 console.log(error);
 })
 }
 });
 }

 function callFHIRServer(theUrl, method, message, accessToken, callBack) {
 var xmlHttp = new XMLHttpRequest();
 xmlHttp.onreadystatechange = function () {
 if (this.readyState == 4 && this.status == 200)
 callBack(JSON.parse(this.responseText));
 }
 xmlHttp.open(method, theUrl, true);
 xmlHttp.setRequestHeader("Content-Type", "application/json;charset=UTF-8");
 xmlHttp.setRequestHeader('Authorization', 'Bearer ' + accessToken);
 xmlHttp.send(message);
 }

 function FHIRCallback(data) {
 patientListHtml = '';
 data.entry.forEach(function(e) {
 patientListHtml += '' + e.resource.name[0].family + ', ' + e.resource.name[0].given + '
(' + e.resource.id + ')';
 });
 patientListHtml += '';
 document.getElementById("patientTable").innerHTML = patientListHtml;
 }
 </script>
</body>

</html>

 Next Steps

From here, you can go back to your web application resource and open the URL found on the Overview page.

Log in to see the patient James Tiberious Kirk that you previously created.

You have successfully deployed the Azure API for FHIR, registered a public client application, tested access, and

created a small web application. Check out the Azure API for FHIR supported features as a next step.

Supported Features

Access Azure API for FHIR with Postman
 3/29/2021 • 4 minutes to read • Edit Online

 Prerequisites

 FHIR server and authentication details

 Connect to FHIR server

A client application can access the Azure API for FHIR through a REST API. To send requests, view responses, and

debug your application as it is being built, use an API testing tool of your choice. In this tutorial, we'll walk you

through the steps of accessing the FHIR server using Postman.

A FHIR endpoint in Azure.

To deploy the Azure API for FHIR (a managed service), you can use the Azure portal, PowerShell, or Azure

CLI.

A registered confidential client application to access the FHIR service.

You have granted permissions to the confidential client application, for example, "FHIR Data Contributor",

to access the FHIR service. For more information, see Configure Azure RBAC for FHIR.

Postman installed.

For more information about Postman, see Get Started with Postman.

To use Postman, the following authentication parameters are required:

Your FHIR server URL, for example, https://MYACCOUNT.azurehealthcareapis.com

The identity provider Authority for your FHIR server, for example,

https://login.microsoftonline.com/{TENANT-ID}

The configured audience that is usually the URL of the FHIR server, for example,

https://<FHIR-SERVER-NAME>.azurehealthcareapis.com or https://azurehealthcareapis.com .

The client_id or application ID of the confidential client application used for accessing the FHIR service.

The client_secret or application secret of the confidential client application.

Finally, you should check that https://www.getpostman.com/oauth2/callback is a registered reply URL for your

client application.

Open Postman, and then select GET to make a request to https://fhir-server-url/metadata .

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/access-fhir-postman-tutorial.md
https://www.hl7.org/fhir/http.html
https://www.getpostman.com/
https://www.getpostman.com

 Obtaining an access token

The metadata URL for Azure API for FHIR is https://MYACCOUNT.azurehealthcareapis.com/metadata .

In this example, the FHIR server URL is https://fhirdocsmsft.azurewebsites.net , and the capability statement of

the server is available at https://fhirdocsmsft.azurewebsites.net/metadata . This endpoint is accessible without

authentication.

If you attempt to access restricted resources, an "Authentication failed" response occurs.

Select Get New Access Token.

F IEL D EXA M P L E VA L UE C O M M EN T

Token Name MYTOKEN A name you choose

Grant Type Authorization Code

To obtain a valid access token, select Authorization and select OAuth 2.0 from the TYPE drop-down menu.

Select Get New Access Token.

In the Get New Access Token dialog box, enter the following details:

Callback URL https://www.getpostman.com/oauth2/callback

Auth URL https://login.microsoftonline.com/{TENANT-
ID}/oauth2/authorize?resource=<audience>

audience is

https://MYACCOUNT.azurehealthcareapis.com

for Azure API for FHIR

Access Token URL https://login.microsoftonline.com/{TENANT
ID}/oauth2/token

Client ID XXXXXXXX-XXX-XXXX-XXXX-
XXXXXXXXXXXX

Application ID

Client Secret XXXXXXXX Secret client key

Scope <Leave Blank> Scope is not used; therefore, it can be
left blank.

State 1234 State is an opaque value to prevent
cross-site request forgery. It is optional
and can take an arbitrary value such as
'1234'.

Client Authentication Send client credentials in body

F IEL D EXA M P L E VA L UE C O M M EN T

Select Request Token to be guided through the Azure Active Directory Authentication flow, and a token will be

returned to Postman. If an authentication failure occurs, refer to the Postman Console for more details. Note: On

the ribbon, select View , and then select Show Postman Console. The keyboard shortcut to the Postman

Console is Alt-Ctr l+C .

Scroll down to view the returned token screen, and then select Use Token.

Refer to the Access Token field to view the newly populated token. If you select Send to repeat the Patient

https://learning.postman.com/docs/sending-requests/authorization/

{
 "aud": "https://MYACCOUNT.azurehealthcareapis.com",
 "iss": "https://sts.windows.net/{TENANT-ID}/",
 "iat": 1545343803,
 "nbf": 1545343803,
 "exp": 1545347703,
 "acr": "1",
 "aio": "AUQAu/8JXXXXXXXXXdQxcxn1eis459j70Kf9DwcUjlKY3I2G/9aOnSbw==",
 "amr": [
 "pwd"
],
 "appid": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "oid": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "appidacr": "1",

 ...// Truncated
}

 Inserting a patient

resource search, a Status 200 OK gets returned. A returned status 200 OK indicates a successful HTTP request.

In the Patient search example, there are no patients in the database such that the search result is empty.

You can inspect the access token using a tool like jwt.ms. An example of the content is shown below.

In troubleshooting situations, validating that you have the correct audience (aud claim) is a good place to start.

If your token is from the correct issuer (iss claim) and has the correct audience (aud claim), but you are still

unable to access the FHIR API, it is likely that the user or service principal (oid claim) doesn't have access to the

FHIR data plane. We recommend you use Azure role-based access control (Azure RBAC) to assign data plane

roles to users. If you're using an external, secondary Azure Active directory tenant for your data plane, you'll

need to Configure local RBAC for FHIR assignments.

It's also possible to get a token for the Azure API for FHIR using the Azure CLI. If you're using a token obtained

with the Azure CLI, you should use Authorization type Bearer Token. Paste the token in directly.

https://jwt.ms

{
 "resourceType": "Patient",
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Kirk",
 "given": [
 "James",
 "Tiberious"
]
 },
 {
 "use": "usual",
 "given": [
 "Jim"
]
 }
],
 "gender": "male",
 "birthDate": "1960-12-25"
}

With a valid access token, you can now insert a new patient. In Postman, change the method by selecting Post,

and then add the following JSON document in the body of the request.

Select Send to determine that the patient is successfully created.

If you repeat the patient search, you should now see the patient record.

 Next steps
In this tutorial, you've accessed the Azure API for FHIR using Postman. For more information about the Azure API

for FHIR features, see

Supported features

Tutorial: Azure Active Directory SMART on FHIR
proxy

 3/11/2021 • 5 minutes to read • Edit Online

 Prerequisites

 Configure Azure AD registrations

 Enable the SMART on FHIR proxy

SMART on FHIR is a set of open specifications to integrate partner applications with FHIR servers and electronic

medical records systems that have FHIR interfaces. One of the main purposes of the specifications is to describe

how an application should discover authentication endpoints for an FHIR server and start an authentication

sequence.

Authentication is based on OAuth2. But because SMART on FHIR uses parameter naming conventions that are

not immediately compatible with Azure Active Directory (Azure AD), the Azure API for FHIR has a built-in Azure

AD SMART on FHIR proxy that enables a subset of the SMART on FHIR launch sequences. Specifically, the proxy

enables the EHR launch sequence.

This tutorial describes how to use the proxy to enable SMART on FHIR applications with the Azure API for FHIR.

An instance of the Azure API for FHIR

.NET Core 2.2

SMART on FHIR requires that Audience has an identifier URI equal to the URI of the FHIR service. The standard

configuration of the Azure API for FHIR uses an Audience value of https://azurehealthcareapis.com . However,

you can also set a value matching the specific URL of your FHIR service (for example

https://MYFHIRAPI.azurehealthcareapis.com). This is required when working with the SMART on FHIR proxy.

You will also need a client application registration. Most SMART on FHIR applications are single-page JavaScript

applications. So you should follow the instructions for configuring a public Azure AD client application.

After you complete these steps, you should have:

A FHIR server with rge audience set to https://MYFHIRAPI.azurehealthcareapis.com , where MYFHIRAPI is the

name of your Azure API for FHIR instance.

A public client application registration. Make a note of the application ID for this client application.

Enable the SMART on FHIR proxy in the Authentication settings for your Azure API for FHIR instance by

selecting the SMART on FHIR proxy check box:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/use-smart-on-fhir-proxy.md
https://docs.smarthealthit.org/
https://hl7.org/fhir/smart-app-launch/#ehr-launch-sequence
https://dotnet.microsoft.com/download/dotnet-core/2.2

 Enable CORS

 Configure the reply URL

Because most SMART on FHIR applications are single-page JavaScript apps, you need to enable cross-origin

resource sharing (CORS) for the Azure API for FHIR:

The SMART on FHIR proxy acts as an intermediary between the SMART on FHIR app and Azure AD. The

authentication reply (the authentication code) must go to the SMART on FHIR proxy instead of the app itself. The

proxy then forwards the reply to the app.

Because of this two-step relay of the authentication code, you need to set the reply URL (callback) for your Azure

AD client application to a URL that is a combination of the reply URL for the SMART on FHIR proxy and the reply

URL for the SMART on FHIR app. The combined reply URL takes this form:

https://MYFHIRAPI.azurehealthcareapis.com/AadSmartOnFhirProxy/callback/aHR0cHM6Ly9sb2NhbGhvc3Q6NTAwMS9zYW1wb
GVhcHAvaW5kZXguaHRtbA

$replyUrl = "https://localhost:5001/sampleapp/index.html"
$fhirServerUrl = "https://MYFHIRAPI.azurewebsites.net"
$bytes = [System.Text.Encoding]::UTF8.GetBytes($ReplyUrl)
$encodedText = [Convert]::ToBase64String($bytes)
$encodedText = $encodedText.TrimEnd('=');
$encodedText = $encodedText.Replace('/','_');
$encodedText = $encodedText.Replace('+','-');

$newReplyUrl = $FhirServerUrl.TrimEnd('/') + "/AadSmartOnFhirProxy/callback/" + $encodedText

 Get a test patient

 Download the SMART on FHIR app launcher

git clone https://github.com/Microsoft/fhir-server
cd fhir-server/samples/apps/SmartLauncher

In that reply, aHR0cHM6Ly9sb2NhbGhvc3Q6NTAwMS9zYW1wbGVhcHAvaW5kZXguaHRtbA is a URL-safe, base64-encoded

version of the reply URL for the SMART on FHIR app. For the SMART on FHIR app launcher, when the app is

running locally, the reply URL is https://localhost:5001/sampleapp/index.html .

You can generate the combined reply URL by using a script like this:

Add the reply URL to the public client application that you created earlier for Azure AD:

To test the Azure API for FHIR and the SMART on FHIR proxy, you'll need to have at least one patient in the

database. If you have not interacted with the API yet and you don't have data in the database, follow the FHIR

API Postman tutorial to load a patient. Make a note of the ID of a specific patient.

The open-source FHIR Server for Azure repository includes a simple SMART on FHIR app launcher and a sample

SMART on FHIR app. In this tutorial, use this SMART on FHIR launcher locally to test the setup.

You can clone the GitHub repository and go to the application by using these commands:

The application needs a few configuration settings, which you can set in appsettings.json :

https://github.com/Microsoft/fhir-server

{
 "FhirServerUrl": "https://MYFHIRAPI.azurehealthcareapis.com",
 "ClientId": "APP-ID",
 "DefaultSmartAppUrl": "/sampleapp/launch.html"
}

dotnet user-secrets set FhirServerUrl https://MYFHIRAPI.azurehealthcareapis.com
dotnet user-secrets set ClientId <APP-ID>

dotnet run

 Test the SMART on FHIR proxy

We recommend that you use the dotnet user-secrets feature:

Use this command to run the application:

After you start the SMART on FHIR app launcher, you can point your browser to https://localhost:5001 , where

you should see the following screen:

When you enter Patient, Encounter , or Practitioner information, you'll notice that the Launch context is

updated. When you're using the Azure API for FHIR, the launch context is simply a JSON document that contains

information about patient, practitioner, and more. This launch context is base64 encoded and passed to the

SMART on FHIR app as the launch query parameter. According to the SMART on FHIR specification, this

variable is opaque to the SMART on FHIR app and passed on to the identity provider.

 Next steps

The SMART on FHIR proxy uses this information to populate fields in the token response. The SMART on FHIR

app can use these fields to control which patient it requests data for and how it renders the application on the

screen. The SMART on FHIR proxy supports the following fields:

patient

encounter

practitioner

need_patient_banner

smart_style_url

These fields are meant to provide guidance to the app, but they don't convey any security information. A SMART

on FHIR application can ignore them.

Notice that the SMART on FHIR app launcher updates the Launch URL information at the bottom of the page.

Select Launch to start the sample app, and you should see something like this sample:

Inspect the token response to see how the launch context fields are passed on to the app.

In this tutorial, you've configured the Azure Active Directory SMART on FHIR proxy. To explore the use of SMART

on FHIR applications with the Azure API for FHIR and the open-source FHIR Server for Azure, go to the

repository of FHIR server samples on GitHub:

FHIR server samples

https://github.com/Microsoft/fhir-server-samples

Tutorial: Receive device data through Azure IoT
Hub

 4/21/2021 • 5 minutes to read • Edit Online

 Prerequisites

TIP

 Get connection string for Azure IoT Connector for FHIR (preview)

 Connect Azure IoT Hub with the Azure IoT Connector for FHIR
(preview)

NOTE

Azure IoT Connector for Fast Healthcare Interoperability Resources (FHIR®)* provides you the capability to

ingest data from Internet of Medical Things (IoMT) devices into Azure API for FHIR. The Deploy Azure IoT

Connector for FHIR (preview) using Azure portal quickstart showed an example of device managed by Azure IoT

Central sending telemetry to Azure IoT Connector for FHIR. Azure IoT Connector for FHIR can also work with

devices provisioned and managed through Azure IoT Hub. This tutorial provides the procedure to connect and

route device data from Azure IoT Hub to Azure IoT Connector for FHIR.

An active Azure subscription - Create one for free

Azure API for FHIR resource with at least one Azure IoT Connector for FHIR - Deploy Azure IoT Connector for

FHIR (preview) using Azure portal

Azure IoT Hub resource connected with real or simulated device(s) - Create an IoT hub using the Azure portal

If you are using an Azure IoT Hub simulated device application, feel free to pick the application of your choice amongst

different supported languages and systems.

Azure IoT Hub requires a connection string to securely connect with your Azure IoT Connector for FHIR. Create a

new connection string for your Azure IoT Connector for FHIR as described in Generate a connection string.

Preserve this connection string to be used in the next step.

Azure IoT Connector for FHIR uses an Azure Event Hub instance under the hood to receive device messages. The

connection string created above is basically the connection string to this underlying Event Hub.

Azure IoT Hub supports a feature called message routing that provides capability to send device data to various

Azure services like Event Hub, Storage Account, and Service Bus. Azure IoT Connector for FHIR leverages this

feature to connect and send device data from Azure IoT Hub to its Event Hub endpoint.

At this time you can only use PowerShell or CLI command to create message routing because Azure IoT Connector for

FHIR's Event Hub is not hosted on the customer subscription, hence it won't be visible to you through the Azure portal.

Though, once the message route objects are added using PowerShell or CLI, they are visible on the Azure portal and can

be managed from there.

Setting up a message routing consists of two steps.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/device-data-through-iot-hub.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/azure/iot-hub/quickstart-send-telemetry-dotnet
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-routing

Add an endpoint

P O W ERSH EL L PA RA M ET ER C L I PA RA M ET ER DESC RIP T IO N

ResourceGroupName resource-group Resource group name of your IoT Hub
resource.

Name hub-name Name of your IoT Hub resource.

EndpointName endpoint-name Use a name that you would like to
assign to the endpoint being created.

EndpointType endpoint-type Type of endpoint that IoT Hub needs
to connect with. Use literal value of
"EventHub" for PowerShell and
"eventhub" for CLI.

EndpointResourceGroup endpoint-resource-group Resource group name for your Azure
IoT Connector for FHIR's Azure API for
FHIR resource. You can get this value
from the Overview page of Azure API
for FHIR.

EndpointSubscriptionId endpoint-subscription-id Subscription Id for your Azure IoT
Connector for FHIR's Azure API for
FHIR resource. You can get this value
from the Overview page of Azure API
for FHIR.

ConnectionString connection-string Connection string to your Azure IoT
Connector for FHIR. Use the value you
obtained in the previous step.

 Add a message route

P O W ERSH EL L PA RA M ET ER C L I PA RA M ET ER DESC RIP T IO N

ResourceGroupName g Resource group name of your IoT Hub
resource.

Name hub-name Name of your IoT Hub resource.

EndpointName endpoint-name Name of the endpoint you have
created above.

RouteName route-name A name you want to assign to
message route being created.

This step defines an endpoint to which the IoT Hub would route the data. Create this endpoint using either Add-

AzIotHubRoutingEndpoint PowerShell command or az iot hub routing-endpoint create CLI command, based on

your preference.

Here is the list of parameters to use with the command to create an endpoint:

This step defines a message route using the endpoint created above. Create a route using either Add-

AzIotHubRoute PowerShell command or az iot hub route create CLI command, based on your preference.

Here is the list of parameters to use with the command to add a message route:

https://docs.microsoft.com/en-us/powershell/module/az.iothub/add-aziothubroutingendpoint
https://docs.microsoft.com/en-us/cli/azure/iot/hub/routing-endpoint#az_iot_hub_routing_endpoint_create
https://docs.microsoft.com/en-us/powershell/module/az.iothub/add-aziothubroute
https://docs.microsoft.com/en-us/cli/azure/iot/hub/route#az_iot_hub_route_create

Source source-type Type of data to send to the endpoint.
Use literal value of "DeviceMessages"
for PowerShell and "devicemessages"
for CLI.

P O W ERSH EL L PA RA M ET ER C L I PA RA M ET ER DESC RIP T IO N

 Send device message to IoT Hub

{
 "HeartRate": 80,
 "RespiratoryRate": 12,
 "HeartRateVariability": 64,
 "BodyTemperature": 99.08839032397609,
 "BloodPressure": {
 "Systolic": 23,
 "Diastolic": 34
 },
 "Activity": "walking"
}

IMPORTANT

 View device data in Azure API for FHIR

TIP

 Next steps

Use your device (real or simulated) to send the sample heart rate message shown below to Azure IoT Hub. This

message will get routed to Azure IoT Connector for FHIR, where the message will be transformed into a FHIR

Observation resource and stored into the Azure API for FHIR.

Make sure to send the device message that conforms to the mapping templates configured with your Azure IoT

Connector for FHIR.

You can view the FHIR Observation resource(s) created by Azure IoT Connector for FHIR on Azure API for FHIR

using Postman. Set up your Postman to access Azure API for FHIR and make a GET request to

https://your-fhir-server-url/Observation?code=http://loinc.org|8867-4 to view Observation FHIR resources

with heart rate value submitted in the above sample message.

Ensure that your user has appropriate access to Azure API for FHIR data plane. Use Azure role-based access control

(Azure RBAC) to assign required data plane roles.

In this quickstart guide, you set up Azure IoT Hub to route device data to Azure IoT Connector for FHIR. Select

from below next steps to learn more about Azure IoT Connector for FHIR:

Understand different stages of data flow within Azure IoT Connector for FHIR.

Azure IoT Connector for FHIR data flow

Learn how to configure IoT Connector using device and FHIR mapping templates.

Azure IoT Connector for FHIR mapping templates

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Centers for Medicare and Medicaid Services (CMS)
Interoperability and Patient Access rule introduction

 6/8/2021 • 4 minutes to read • Edit Online

 Rule overview

 Key FHIR concepts

In this series of tutorials, we'll cover a high-level summary of the Center for Medicare and Medicaid Services

(CMS) Interoperability and Patient Access rule, and the technical requirements outlined in this rule. We'll walk

through the various implementation guides referenced for this rule. We'll also provide details on how to

configure the Azure API for FHIR to support these implementation guides.

The CMS released the Interoperability and Patient Access rule on May 1, 2020. This rule requires free and secure

data flow between all parties involved in patient care (patients, providers, and payers) to allow patients to access

their health information when they need it. Interoperability has plagued the healthcare industry for decades,

resulting in siloed data that causes negative health outcomes with higher and unpredictable costs for care. CMS

is using their authority to regulate Medicare Advantage (MA), Medicaid, Children's Health Insurance Program

(CHIP), and Qualified Health Plan (QHP) issuers on the Federally Facilitated Exchanges (FFEs) to enforce this rule.

In August 2020, CMS detailed how organizations can meet the mandate. To ensure that data can be exchanged

securely and in a standardized manner, CMS identified FHIR version release 4 (R4) as the foundational standard

required for the data exchange.

There are three main pieces to the Interoperability and Patient Access ruling:

Patient Access API (Required July 1 , 2021) – CMS-regulated payers (as defined above) are required

to implement and maintain a secure, standards-based API that allows patients to easily access their

claims and encounter information, including cost, as well as a defined subset of their clinical information

through third-party applications of their choice.

Provider Director y API (Required July 1 , 2021) – CMS-regulated payers are required by this

portion of the rule to make provider directory information publicly available via a standards-based API.

Through making this information available, third-party application developers will be able to create

services that help patients find providers for specific care needs and clinicians find other providers for

care coordination.

Payer-to-Payer Data Exchange (Required Januar y 1, 2022) – CMS-regulated payers are required

to exchange certain patient clinical data at the patient’s request with other payers. While there's no

requirement to follow any kind of standard, applying FHIR to exchange this data is encouraged.

As mentioned above, FHIR R4 is required to meet this mandate. In addition, there have been several

implementation guides developed that provide guidance for the rule. Implementation guides provide extra

context on top of the base FHIR specification. This includes defining additional search parameters, profiles,

extensions, operations, value sets, and code systems.

The Azure API for FHIR has the following capabilities to help you configure your database for the various

implementation guides:

Support for RESTful interactions

Storing and validating profiles

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/cms-tutorial-introduction.md
https://www.cms.gov/Regulations-and-Guidance/Guidance/Interoperability/index
https://www.hl7.org/fhir/implementationguide.html

 Patient Access API Implementation Guides

 Provider Directory API Implementation Guide

 Touchstone

 Next steps

Defining and indexing custom search parameters

Converting data

The Patient Access API describes adherence to four FHIR implementation guides:

CARIN IG for Blue Button®: Payers are required to make patients' claims and encounters data available

according to the CARIN IG for Blue Button Implementation Guide (C4BB IG). The C4BB IG provides a set of

resources that payers can display to consumers via a FHIR API and includes the details required for claims

data in the Interoperability and Patient Access API. This implementation guide uses the

ExplanationOfBenefit (EOB) Resource as the main resource, pulling in other resources as they are

referenced.

HL7 FHIR Da Vinci PDex IG: The Payer Data Exchange Implementation Guide (PDex IG) is focused on

ensuring that payers provide all relevant patient clinical data to meet the requirements for the Patient

Access API. This uses the US Core profiles on R4 Resources and includes (at a minimum) encounters,

providers, organizations, locations, dates of service, diagnoses, procedures, and observations. While this

data may be available in FHIR format, it may also come from other systems in the format of claims data,

HL7 V2 messages, and C-CDA documents.

HL7 US Core IG: The HL7 US Core Implementation Guide (US Core IG) is the backbone for the PDex IG

described above. While the PDex IG limits some resources even further than the US Core IG, many

resources just follow the standards in the US Core IG.

HL7 FHIR Da Vinci - PDex US Drug Formulary IG: Part D Medicare Advantage plans have to make

formulary information available via the Patient API. They do this using the PDex US Drug Formulary

Implementation Guide (USDF IG). The USDF IG defines a FHIR interface to a health insurer ’s drug

formulary information, which is a list of brand-name and generic prescription drugs that a health insurer

agrees to pay for. The main use case of this is so that patients can understand if there are alternative drug

available to one that has been prescribed to them and to compare drug costs.

The Provider Directory API describes adherence to one implementation guide:

HL7 Da Vinci PDex Plan Network IG: This implementation guide defines a FHIR interface to a health insurer ’s

insurance plans, their associated networks, and the organizations and providers that participate in these

networks.

To test adherence to the various implementation guides, Touchstone is a great resource. Throughout the

upcoming tutorials, we'll focus on ensuring that the Azure API for FHIR is configured to successfully pass various

Touchstone tests. The Touchstone site has a lot of great documentation to help you get up and running.

Now that you have a basic understanding of the Interoperability and Patient Access rule, implementation guides,

and available testing tool (Touchstone), we’ll walk through setting up the Azure API for FHIR for the CARIN IG for

Blue Button.

CARIN Implementation Guide for Blue Button

http://hl7.org/fhir/us/carin-bb/STU1/index.html
http://hl7.org/fhir/us/davinci-pdex/STU1/index.html
https://www.hl7.org/fhir/us/core/toc.html
http://hl7.org/fhir/us/Davinci-drug-formulary/index.html
http://build.fhir.org/ig/HL7/davinci-pdex-plan-net/
https://touchstone.aegis.net/touchstone/

CARIN Implementation Guide for Blue Button®
 6/8/2021 • 2 minutes to read • Edit Online

 Touchstone capability statement

 Define search parameters

NOTE

 Store profiles

 Sample rest file

In this tutorial, we'll walk through setting up the Azure API for FHIR to pass the Touchstone tests for the CARIN

Implementation Guide for Blue Button (C4BB IG).

The first test that we'll focus on is testing the Azure API for FHIR against the C4BB IG capability statement. If you

run this test against the Azure API for FHIR without any updates, the test will fail due to missing search

parameters and missing profiles.

As part of the C4BB IG, you'll need to define three new search parameters for the ExplanationOfBenefit

resource. Two of these are tested in the capability statement (type and service-date), and one is needed for

_include searches (insurer).

type

service-date

insurer

In the raw JSON for these search parameters, the name is set to ExplanationOfBenefit_<SearchParameter Name> . The

Touchstone test is expecting that the name for these will be type, ser vice-date , and insurer .

The rest of the search parameters needed for the C4BB IG are defined by the base specification and are already

available in the Azure API for FHIR without any additional updates.

Outside of defining search parameters, the other update you need to make to pass this test is to load the

required profiles. There are eight profiles defined within the C4BB IG.

C4BB Coverage

C4BB ExplanationOfBenefit Inpatient Institutional

C4BB ExplanationOfBenefit Outpatient Institutional

C4BB ExplanationOfBenefit Pharmacy

C4BB ExplanationOfBenefit Professional NonClinician

C4BB Organization

C4BB Patient

C4BB Practitioner

To assist with creation of these search parameters and profiles, we have a sample http file that includes all the

steps outlined above in a single file. Once you've uploaded all the necessary profiles and search parameters, you

can run the capability statement test in Touchstone.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/carin-implementation-guide-blue-button-tutorial.md
https://touchstone.aegis.net/touchstone/
https://build.fhir.org/ig/HL7/carin-bb/index.html
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/00-Capability&activeOnly=false&contentEntry=TEST_SCRIPTS
https://build.fhir.org/ig/HL7/carin-bb/SearchParameter-explanationofbenefit-type.json
https://build.fhir.org/ig/HL7/carin-bb/SearchParameter-explanationofbenefit-service-date.json
https://build.fhir.org/ig/HL7/carin-bb/SearchParameter-explanationofbenefit-insurer.json
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Coverage.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Inpatient-Institutional.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Outpatient-Institutional.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Pharmacy.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-ExplanationOfBenefit-Professional-NonClinician.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Organization.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Patient.html
https://build.fhir.org/ig/HL7/carin-bb/StructureDefinition-C4BB-Practitioner.html
https://github.com/microsoft/fhir-server/blob/main/docs/rest/C4BB/C4BB.http

 Touchstone read test

 Touchstone EOB query test

After testing the capabilities statement, we will test the read capabilities of the Azure API for FHIR against the

C4BB IG. This test is testing conformance against the eight profiles you loaded in the first test. You will need to

have resources loaded that conform to the profiles. The best path would be to test against resources that you

already have in your database, but we also have an http file available with sample resources pulled from the

examples in the IG that you can use to create the resources and test against.

The next test we'll review is the EOB query test. If you've already completed the read test, you have all the data

https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/01-Read&activeOnly=false&contentEntry=TEST_SCRIPTS
https://github.com/microsoft/fhir-server/blob/main/docs/rest/C4BB/C4BB_Sample_Resources.http
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/02-EOBQuery&activeOnly=false&contentEntry=TEST_SCRIPTS

 Touchstone error handling test

 Next steps

loaded that you'll need. This test validates that you can search for specific Patient and ExplanationOfBenefit

resources using various parameters.

The final test we'll walk through is testing error handling. The only step you need to do is delete an

ExplanationOfBenefit resource from your database and use the ID of the deleted ExplanationOfBenefit resource

in the test.

In this tutorial, we walked through how to pass the CARIN IG for Blue Button tests in Touchstone. Next, you can

review how to test the Da Vinci formulary tests.

DaVinci Drug Formulary

https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/CARIN/CARIN-4-BlueButton/99-ErrorHandling&activeOnly=false&contentEntry=TEST_SCRIPTS

Da Vinci Drug Formulary
 6/8/2021 • 2 minutes to read • Edit Online

 Touchstone capability statement

 Define search parameters

 Store profiles

 Sample rest file

In this tutorial, we'll walk through setting up the Azure API for FHIR to pass the Touchstone tests for the Da Vinci

Payer Data Exchange US Drug Formulary Implementation Guide.

The first test that we'll focus on is testing the Azure API for FHIR against the Da Vinci Drug Formulary capability

statement. If you run this test without any updates, the test will fail due to missing search parameters and

missing profiles.

As part of the Da Vinci Drug Formulary IG, you'll need to define three new search parameters for the

FormularyDrug resource. All three of these are tested in the capability statement.

DrugTier

DrugPlan

DrugName

The rest of the search parameters needed for the Da Vinci Drug Formulary IG are defined by the base

specification and are already available in the Azure API for FHIR without any more updates.

Outside of defining search parameters, the only other update you need to make to pass this test is to load the

required profiles. There are two profiles used as part of the Da Vinci Drug Formulary IG.

Formulary Drug

Formulary Coverage Plan

To assist with creation of these search parameters and profiles, we have the Da Vinci Formulary sample HTTP file

on the open-source site that includes all the steps outlined above in a single file. Once you've uploaded all the

necessary profiles and search parameters, you can run the capability statement test in Touchstone. You should

get a successful run:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/davinci-drug-formulary-tutorial.md
https://touchstone.aegis.net/touchstone/
http://hl7.org/fhir/us/Davinci-drug-formulary/
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/Formulary/00-Capability&activeOnly=false&contentEntry=TEST_SCRIPTS
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/SearchParameter-DrugTier.json.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/SearchParameter-DrugPlan.json.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/SearchParameter-DrugName.json.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/StructureDefinition-usdf-FormularyDrug.html
http://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/StructureDefinition-usdf-CoveragePlan.html
https://github.com/microsoft/fhir-server/blob/main/docs/rest/DaVinciFormulary/DaVinciFormulary.http

 Touchstone query test

 Next steps

The second test is the query capabilities. This test validates that you can search for specific Coverage Plan and

Drug resources using various parameters. The best path would be to test against resources that you already

have in your database, but we also have the Da VinciFormulary_Sample_Resources HTTP file available with

sample resources pulled from the examples in the IG that you can use to create the resources and test against.

In this tutorial, we walked through how to pass the Da Vinci Payer Data Exchange US Drug Formulary in

Touchstone. Next, you can learn how to test the Da Vinci PDex Implementation Guide in Touchstone.

Da Vinci PDex

https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/Formulary/01-Query&activeOnly=false&contentEntry=TEST_SCRIPTS
https://github.com/microsoft/fhir-server/blob/main/docs/rest/DaVinciFormulary/DaVinciFormulary_Sample_Resources.http

Da Vinci PDex
 6/8/2021 • 2 minutes to read • Edit Online

NOTE

 Touchstone capability statement

 Touchstone $member-match test

In this tutorial, we'll walk through setting up the Azure API for FHIR to pass the Touchstone tests for the Da Vinci

Payer Data Exchange Implementation Guide (PDex IG).

For all these tests, we'll run them against the JSON tests. The Azure API for FHIR supports both JSON and XML, but it

doesn’t have separate endpoints to access JSON or XML. Because of this, all the XML tests will fail. If you want to view the

capability statement in XML you simply pass the _format parameter: `GET {fhirurl}/metadata?_format=xml`

The first set of tests that we'll focus on is testing the Azure API for FHIR against the PDex IG capability statement.

This includes three tests:

The first test validates the basic capability statement against the IG requirements and will pass without

any updates.

The second test validates all the profiles have been added for US Core. This test will pass without updates

but will include a bunch of warnings. To have these warnings removed, you need to load the US Core

profiles. We've created a sample HTTP file that walks through creating all the profiles. You can also get the

profiles from the HL7 site directly, which will have the most current versions.

The third test validates that the $patient-everything operation is supported. Right now, this test will fail.

The operation will be available in mid-June 2021 in the Azure API for FHIR and is available now in the

open-source FHIR server on Cosmos DB. However, it is missing from the capability statement, so this test

will fail until we release a fix to bug 1989.

The second test in the Payer Data Exchange section tests the existence of the $member-match operation. You can

read more about the $member-match operation in our $member-match operation overview.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/davinci-pdex-tutorial.md
https://touchstone.aegis.net/touchstone/
http://hl7.org/fhir/us/davinci-pdex/toc.html
https://github.com/microsoft/fhir-server/blob/main/docs/rest/PayerDataExchange/USCore.http
http://hl7.org/fhir/us/core/STU3.1.1/profiles.html#profiles
https://github.com/microsoft/fhir-server/issues/1989
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/01-Member-Match&activeOnly=false&contentEntry=TEST_SCRIPTS
http://hl7.org/fhir/us/davinci-hrex/2020Sep/OperationDefinition-member-match.html

 Touchstone patient by reference

 Touchstone patient/$everything test

 Next steps

In this test, you’ll need to load some sample data for the test to pass. We have a rest file here with the patient

and coverage linked that you will need for the test. Once this data is loaded, you'll be able to successfully pass

this test. If the data is not loaded, you'll receive a 422 response due to not finding an exact match.

The next tests we'll review is the patient by reference tests. This set of tests validate that you can find a patient

based on various search criteria. The best way to test the patient by reference will be to test against your own

data, but we have uploaded a sample resource file that you can load to use as well.

The final test we'll walk through is testing patient-everything. For this test, you'll need to load a patient, and then

you'll use that patient’s ID to test that you can use the $everything operation to pull all data related to the

patient.

In this tutorial, we walked through how to pass the Payer Exchange tests in Touchstone. Next, you can learn

about all the Azure API for FHIR features.

Supported features

https://github.com/microsoft/fhir-server/blob/main/docs/rest/PayerDataExchange/membermatch.http
https://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIRSandbox/DaVinci/FHIR4-0-1-Test/PDEX/PayerExchange/02-PatientByReference&activeOnly=false&contentEntry=TEST_SCRIPTS
https://github.com/microsoft/fhir-server/blob/main/docs/rest/PayerDataExchange/PDex_Sample_Data.http

Register the Azure Active Directory apps for Azure
API for FHIR

 3/11/2021 • 2 minutes to read • Edit Online

 Application registrations

 Next steps

You have several configuration options to choose from when you're setting up the Azure API for FHIR or the

FHIR Server for Azure (OSS). For open source, you'll need to create your own resource application registration.

For Azure API for FHIR, this resource application is created automatically.

In order for an application to interact with Azure AD, it needs to be registered. In the context of the FHIR server,

there are two kinds of application registrations to discuss:

1. Resource application registrations.

2. Client application registrations.

Resource applications are representations in Azure AD of an API or resource that is secured with Azure AD,

specifically it would be the Azure API for FHIR. A resource application for Azure API for FHIR will be created

automatically when you provision the service, but if you're using the open-source server, you'll need to register

a resource application in Azure AD. This resource application will have an identifier URI. It's recommended that

this URI be the same as the URI of the FHIR server. This URI should be used as the Audience for the FHIR server.

A client application can request access to this FHIR server when it requests a token.

Client applications are registrations of the clients that will be requesting tokens. Often in OAuth 2.0, we

distinguish between at least three different types of applications:

1. Confidential clients , also known as web apps in Azure AD. Confidential clients are applications that use

authorization code flow to obtain a token on behalf of a signed in user presenting valid credentials. They are

called confidential clients because they are able to hold a secret and will present this secret to Azure AD when

exchanging the authentication code for a token. Since confidential clients are able to authenticate themselves

using the client secret, they are trusted more than public clients and can have longer lived tokens and be

granted a refresh token. Read the details on how to register a confidential client. Note that is important to

register the reply url at which the client will be receiving the authorization code.

2. Public clients . These are clients that cannot keep a secret. Typically this would be a mobile device

application or a single page JavaScript application, where a secret in the client could be discovered by a user.

Public clients also use authorization code flow, but they are not allowed to present a secret when obtaining a

token and they may have shorter lived tokens and no refresh token. Read the details on how to register a

public client.

3. Service clients. These clients obtain tokens on behalf of themselves (not on behalf of a user) using the client

credentials flow. They typically represent applications that access the FHIR server in a non-interactive way. An

example would be an ingestion process. When using a service client, it is not necessary to start the process

of getting a token with a call to the /authorize endpoint. A service client can go straight to the /token

endpoint and present client ID and client secret to obtain a token. Read the details on how to register a

service client

In this overview, you've gone through the types of application registrations you may need in order to work with

a FHIR API.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-app-registration.md
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-oauth2-client-creds-grant-flow

Based on your setup, please see the how-to-guides to register your applications

Register a resource application

Register a confidential client application

Register a public client application

Register a service application

Once you have registered your applications, you can deploy the Azure API for FHIR.

Deploy Azure API for FHIR

Register a resource application in Azure Active
Directory

 3/11/2021 • 2 minutes to read • Edit Online

 Azure API for FHIR

New-AzADServicePrincipal -ApplicationId 4f6778d8-5aef-43dc-a1ff-b073724b9495

az ad sp create --id 4f6778d8-5aef-43dc-a1ff-b073724b9495

 FHIR Server for Azure

 Next steps

In this article, you'll learn how to register a resource (or API) application in Azure Active Directory. A resource

application is an Azure Active Directory representation of the FHIR server API itself and client applications can

request access to the resource when authenticating. The resource application is also known as the audience in

OAuth parlance.

If you are using the Azure API for FHIR, a resource application is automatically created when you deploy the

service. As long as you are using the Azure API for FHIR in the same Azure Active Directory tenant as you are

deploying your application, you can skip this how-to-guide and instead deploy your Azure API for FHIR to get

started.

If you are using a different Azure Active Directory tenant (not associated with your subscription), you can import

the Azure API for FHIR resource application into your tenant with PowerShell:

or you can use Azure CLI:

If you are using the open source FHIR Server for Azure, follow the steps on the GitHub repo to register a

resource application.

In this article, you've learned how to register a resource application in Azure Active Directory. Next, register your

confidential client application.

Register Confidential Client Application

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-resource-azure-ad-client-app.md
https://github.com/microsoft/fhir-server/blob/master/docs/Register-Resource-Application.md

Register a confidential client application in Azure
Active Directory

 4/9/2021 • 2 minutes to read • Edit Online

 Register a new application

In this tutorial, you'll learn how to register a confidential client application in Azure Active Directory (Azure AD).

A client application registration is an Azure AD representation of an application that can be used to authenticate

on behalf of a user and request access to resource applications. A confidential client application is an application

that can be trusted to hold a secret and present that secret when requesting access tokens. Examples of

confidential applications are server-side applications.

To register a new confidential client application, refer to the steps below.

1. In the Azure portal, select Azure Active Director y .

2. Select App registrations .

3. Select New registration.

4. Give the application a user-facing display name.

5. For Suppor ted account types , select who can use the application or access the API.

6. (Optional) Provide a Redirect URI. These details can be changed later, but if you know the reply URL of

your application, enter it now.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-confidential-azure-ad-client-app.md
https://portal.azure.com

 API permissions

7. Select Register .

Now that you've registered your application, you must select which API permissions this application should

request on behalf of users.

1. Select API permissions .

2. Select Add a permission.

If you're using the Azure API for FHIR, you'll add a permission to the Azure Healthcare APIs by searching

for Azure Healthcare API under APIs my organization uses . The search result for Azure Healthcare

API will only return if you've already deployed the Azure API for FHIR.

If you're referencing a different resource application, select your FHIR API Resource Application

Registration that you created previously under My APIs .

 Application secret

3. Select scopes (permissions) that the confidential client application will ask for on behalf of a user. Select

user_impersonation, and then select Add permissions .

1. Select Cer tificates & secrets , and then select New client secret.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/conf-client-app/confidential-app-org-api-expanded.png#lightbox

2. Enter a Descr iption for the client secret. Select the Expires drop-down menu to choose an expiration

time frame, and then click Add.

3. After the client secret string is created, copy its Value and ID, and store them in a secure location of your

choice.

NOTE

 Next steps

The client secret string is visible only once in the Azure portal. When you navigate away from the Certificates & secrets

web page and then return back to it, the Value string becomes masked. It's important to make a copy your client secret

string immediately after it is generated. If you don't have a backup copy of your client secret, you must repeat the above

steps to regenerate it.

In this article, you were guided through the steps of how to register a confidential client application in the Azure

AD. You were also guided through the steps of how to add API permissions to the Azure Healthcare API. Lastly,

you were shown how to create an application secret. Furthermore, you can learn how to access your FHIR server

using Postman.

Access Azure API for FHIR with Postman

Register a public client application in Azure Active
Directory

 3/11/2021 • 2 minutes to read • Edit Online

 App registrations in Azure portal

 Application registration overview

In this article, you'll learn how to register a public application in Azure Active Directory.

Client application registrations are Azure Active Directory representations of applications that can authenticate

and ask for API permissions on behalf of a user. Public clients are applications such as mobile applications and

single page JavaScript applications that can't keep secrets confidential. The procedure is similar to registering a

confidential client, but since public clients can't be trusted to hold an application secret, there's no need to add

one.

The quickstart provides general information about how to register an application with the Microsoft identity

platform.

1. In the Azure portal, on the left navigation panel, click Azure Active Director y .

2. In the Azure Active Director y blade, click App registrations :

3. Click the New registration.

1. Give the application a display name.

2. Provide a reply URL. The reply URL is where authentication codes will be returned to the client

application. You can add more reply URLs and edit existing ones later.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-public-azure-ad-client-app.md
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://portal.azure.com

 API permissions

To configure your desktop, mobile or single-page application as public application:

1. In the Azure portal, in App registrations , select your app, and then select Authentication.

2. Select Advanced settings > Default client type. For Treat application as a public client, select

Yes .

3. For a single-page application, select Access tokens and ID tokens to enable implicit flow.

If your application signs in users, select ID tokens .

If your application also needs to call a protected web API, select Access tokens .

Similarly to the confidential client application, you'll need to select which API permissions this application should

be able to request on behalf of users:

1. Open the API permissions .

If you are using the Azure API for FHIR, you will add a permission to the Azure Healthcare APIs by

searching for Azure Healthcare APIs under APIs my organization uses . You will only be able to find

this if you have already deployed the Azure API for FHIR.

If you are referencing a different Resource Application, select your FHIR API Resource Application

Registration that you created previously under My APIs :

https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-desktop-app-registration
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-mobile-app-registration
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-spa-app-registration
https://portal.azure.com

 Validate FHIR server authority

 Next steps

2. Select the permissions that you would like the application to be able to request:

If the application you registered in this article and your FHIR server are in the same Azure AD tenant, you are

good to proceed to the next steps.

If you configure your client application in a different Azure AD tenant from your FHIR server, you will need to

update the Authority . In Azure API for FHIR, you do set the Authority under Settings --> Authentication. Set

your Authority to https://login.microsoftonline.com/\.

In this article, you've learned how to register a public client application in Azure Active Directory. Next, test

access to your FHIR server using Postman.

Access Azure API for FHIR with Postman

https://login.microsoftonline.com/%255C

Register a service client application in Azure Active
Directory

 3/11/2021 • 2 minutes to read • Edit Online

 App registrations in Azure portal

In this article, you'll learn how to register a service client application in Azure Active Directory. Client application

registrations are Azure Active Directory representations of applications that can be used to authenticate and

obtain tokens. A service client is intended to be used by an application to obtain an access token without

interactive authentication of a user. It will have certain application permissions and use an application secret

(password) when obtaining access tokens.

Follow these steps to create a new service client.

1. In the Azure portal, navigate to Azure Active Director y .

2. Select App registrations .

3. Select New registration.

4. Give the service client a display name. Service client applications typically do not use a reply URL.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/register-service-azure-ad-client-app.md
https://portal.azure.com

 API permissions

5. Select Register .

Now that you have registered your application, you'll need to select which API permissions this application

should be able to request on behalf of users:

1. Select API permissions .

2. Select Add a permission.

If you are using the Azure API for FHIR, you will add a permission to the Azure Healthcare APIs by

searching for Azure Healthcare APIs under APIs my organization uses .

If you are referencing a different Resource Application, select your FHIR API Resource Application

Registration that you created previously under My APIs .

3. Select scopes (permissions) that the confidential application should be able to ask for on behalf of a user :

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/service-client-app/service-client-org-api-expanded.png#lightbox

4. Grant consent to the application. If you don't have the permissions required, check with your Azure Active

Directory administrator :

 Application secret

 Next steps

The service client needs a secret (password) to obtain a token.

1. Select Cer tificates & secrets .

2. Select New client secret.

3. Provide a description and duration of the secret (either 1 year, 2 years or never).

4. Once the secret has been generated, it will only be displayed once in the portal. Make a note of it and

store in a securely.

In this article, you've learned how to register a service client application in Azure Active Directory. Next, test

access to your FHIR server using Postman.

Access Azure API for FHIR with Postman

Additional settings for Azure API for FHIR
 3/11/2021 • 2 minutes to read • Edit Online

 Configure Database settings

 Access control

 Enable diagnostic logging

 Use custom headers to add data to audit logs

In this how-to guide, we will review the additional settings you may want to set in your Azure API for FHIR.

There are additional pages that drill into even more details.

Azure API for FHIR uses database to store its data. Performance of the underlying database depends on the

number of Request Units (RU) selected during service provisioning or in database settings after the service has

been provisioned.

Throughput must be provisioned to ensure that sufficient system resources are available for your database at all

times. How many RUs you need for your application depends on operations you perform. Operations can range

from simple read and writes to more complex queries.

For more information on how to change the default settings, see configure database settings.

The Azure API for FHIR will only allow authorized users to access the FHIR API. You can configure authorized

users through two different mechanisms. The primary and recommended way to configure access control is

using Azure role-based access control (Azure RBAC), which is accessible through the Access control (IAM)

blade. Azure RBAC only works if you want to secure data plane access using the Azure Active Directory tenant

associated with your subscription. If you wish to use a different tenant, the Azure API for FHIR offers a local FHIR

data plane access control mechanism. The configuration options are not as rich when using the local RBAC

mechanism. For details, choose one of the following options:

Azure RBAC for FHIR data plane. This is the preferred option when you are using the Azure Active Directory

tenant associated with your subscription.

Local FHIR data plane access control. Use this option only when you need to use an external Azure Active

Directory tenant for data plane access control.

You may want to enable diagnostic logging as part of your setup to be able to monitor your service and have

accurate reporting for compliance purposes. For details on how to set up diagnostic logging, see our how-to-

guide on how to set up diagnostic logging, along with some sample queries.

In the Azure API for FHIR, you may want to include additional information in the logs, which comes from the

calling system. To do including this information, you can use custom headers.

You can use custom headers to capture several types of information. For example:

Identity or authorization information

Origin of the caller

Originating organization

Client system details (electronic health record, patient portal)

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/azure-api-for-fhir-additional-settings.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/index

 Next steps

To add this data to your audit logs, see the Use Custom HTTP headers to add data to Audit Logs how-to-guide.

In this how-to guide, you set up additional settings for the Azure API for FHIR.

Next check out the series of tutorials to create a web application that reads FHIR data.

Deploy JavaScript application

Configure Azure RBAC for FHIR
 3/11/2021 • 2 minutes to read • Edit Online

 Confirm Azure RBAC mode

 Assign roles

In this article, you will learn how to use Azure role-based access control (Azure RBAC) to assign access to the

Azure API for FHIR data plane. Azure RBAC is the preferred methods for assigning data plane access when data

plane users are managed in the Azure Active Directory tenant associated with your Azure subscription. If you are

using an external Azure Active Directory tenant, refer to the local RBAC assignment reference.

To use Azure RBAC, your Azure API for FHIR must be configured to use your Azure subscription tenant for data

plane and there should be no assigned identity object IDs. You can verify your settings by inspecting the

Authentication blade of your Azure API for FHIR:

The Authority should be set to the Azure Active directory tenant associated with your subscription and there

should be no GUIDs in the box labeled Allowed object IDs . You will also notice that the box is disabled and a

label indicates that Azure RBAC should be used to assign data plane roles.

To grant users, service principals or groups access to the FHIR data plane, click Access control (IAM) , then click

Role assignments and click + Add:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-azure-rbac.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/index

In the Role selection, search for one of the built-in roles for the FHIR data plane:

 Caching behavior

 Next steps

You can choose between:

FHIR Data Reader : Can read (and search) FHIR data.

FHIR Data Writer : Can read, write, and soft delete FHIR data.

FHIR Data Exporter : Can read and export ($export operator) data.

FHIR Data Contributor : Can perform all data plane operations.

If these roles are not sufficient for your need, you can also create custom roles.

In the Select box, search for a user, service principal, or group that you wish to assign the role to.

The Azure API for FHIR will cache decisions for up to 5 minutes. If you grant a user access to the FHIR server by

adding them to the list of allowed object IDs, or you remove them from the list, you should expect it to take up

to five minutes for changes in permissions to propagate.

In this article, you learned how to assign Azure roles for the FHIR data plane. To learn about additional settings

for the Azure API for FHIR:

https://docs.microsoft.com/en-us/azure/role-based-access-control/tutorial-custom-role-powershell

Additional settings for Azure API for FHIR

Configure local RBAC for FHIR
 3/11/2021 • 2 minutes to read • Edit Online

NOTE

 Add service principal

New-AzADServicePrincipal -ApplicationId 3274406e-4e0a-4852-ba4f-d7226630abb7

New-AzureADServicePrincipal -AppId 3274406e-4e0a-4852-ba4f-d7226630abb7

az ad sp create --id 3274406e-4e0a-4852-ba4f-d7226630abb7

 Configure local RBAC

This article explains how to configure the Azure API for FHIR to use an external, secondary Azure Active

Directory tenant for managing data plane access. Use this mode only if it is not possible for you to use the Azure

Active Directory tenant associated with your subscription.

If your FHIR service data plane is configured to use your primary Azure Active Directory tenant associated with your

subscription, use Azure RBAC to assign data plane roles.

Local RBAC allows you to use an external Azure Active Directory tenant with your FHIR server. In order to allow

the local RBAC system to check group memberships in this tenant, the Azure API for FHIR must have a service

principal in the tenant. This service principal will get created automatically in tenants tied to subscriptions that

have deployed the Azure API for FHIR, but in case your tenant has no subscription tied to it, a tenant

administrator will need to create this service principal with one of the following commands:

Using the Az PowerShell module:

or you can use the AzureAd PowerShell module:

or you can use Azure CLI:

You can configure the Azure API for FHIR to use an external or secondary Azure Active Directory tenant in the

Authentication blade:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-local-rbac.md

 Caching behavior

 Next steps

.

In the authority box, enter a valid Azure Active Directory tenant. Once the tenant has been validated, the

Allowed object IDs box should be activated and you can enter a list of identity object IDs. These IDs can be the

identity object IDs of:

An Azure Active Directory user.

An Azure Active Directory service principal.

An Azure Active directory security group.

You can read the article on how to find identity object IDs for more details.

After entering the required object IDs, click Save and wait for changes to be saved before trying to access the

data plane using the assigned users, service principals, or groups.

The Azure API for FHIR will cache decisions for up to 5 minutes. If you grant a user access to the FHIR server by

adding them to the list of allowed object IDs, or you remove them from the list, you should expect it to take up

to five minutes for changes in permissions to propagate.

In this article, you learned how to assign FHIR data plane access using an external (secondary) Azure Active

Directory tenant. Next learn about additional settings for the Azure API for FHIR:

Additional settings Azure API for FHIR

Configure database settings
 3/11/2021 • 2 minutes to read • Edit Online

NOTE

 Update throughput

NOTE

Azure API for FHIR uses database to store its data. Performance of the underlying database depends on the

number of Request Units (RU) selected during service provisioning or in database settings after the service has

been provisioned.

Azure API for FHIR borrows the concept of RUs from Cosmos DB (see Request Units in Azure Cosmos DB) when

setting the performance of underlying database.

Throughput must be provisioned to ensure that sufficient system resources are available for your database at all

times. How many RUs you need for your application depends on operations you perform. Operations can range

from simple read and writes to more complex queries.

As different operations consume different number of RU, we return the actual number of RUs consumed in every API call

in response header. This way you can profile the number of RUs consumed by your application.

To change this setting in the Azure portal, navigate to your Azure API for FHIR and open the Database blade.

Next, change the Provisioned throughput to the desired value depending on your performance needs. You can

change the value up to a maximum of 10,000 RU/s. If you need a higher value, contact Azure support.

If the database throughput is greater than 10,000 RU/s or if the data stored in the database is more than 50 GB,

your client application must be capable of handling continuation tokens. A new partition is created in the

database for every throughput increase of 10,000 RU/s or if the amount of data stored is more than 50 GB.

Multiple partitions creates a multi-page response in which pagination is implemented by using continuation

tokens.

Higher value means higher Azure API for FHIR throughput and higher cost of the service.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-database.md
https://docs.microsoft.com/en-us/azure/cosmos-db/request-units

 Next steps
In this article, you learned how to update your RUs for Azure API for FHIR. To learn about configuring customer-

managed keys as a database setting:

Configure customer-managed keys

Or you can deploy a fully managed Azure API for FHIR:

Deploy Azure API for FHIR

Configure customer-managed keys at rest
 5/28/2021 • 3 minutes to read • Edit Online

 Using Azure portal

IMPORTANT

When you create a new Azure API for FHIR account, your data is encrypted using Microsoft-managed keys by

default. Now, you can add a second layer of encryption for the data using your own key that you choose and

manage yourself.

In Azure, this is typically accomplished using an encryption key in the customer's Azure Key Vault. Azure SQL,

Azure Storage, and Cosmos DB are some examples that provide this capability today. Azure API for FHIR

leverages this support from Cosmos DB. When you create an account, you will have the option to specify an

Azure Key Vault key URI. This key will be passed on to Cosmos DB when the DB account is provisioned. When a

FHIR request is made, Cosmos DB fetches your key and uses it to encrypt/decrypt the data.

To get started, refer to the following links:

Register the Azure Cosmos DB resource provider for your Azure subscription

Configure your Azure Key Vault instance

Add an access policy to your Azure Key Vault instance

Generate a key in Azure Key Vault

When creating your Azure API for FHIR account on Azure portal, you'll notice Data Encr yption configuration

option under the Database Settings on the Additional Settings tab. By default, the service-managed key

option will be selected.

The data encryption option is only available when the Azure API for FHIR is created and cannot be changed afterwards.

However, you can view and update the encryption key if the Customer-managed key option is selected.

You can choose your key from the KeyPicker :

You can also specify your Azure Key Vault key here by selecting Customer-managed key option.

You can also enter the key URI here:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/customer-managed-key.md
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk

IMPORTANT
Ensure all permissions for Azure Key Vault are set appropriately. For more information, see Add an access policy to your

Azure Key Vault instance. Additionally, ensure that the soft delete is enabled in the properties of the Key Vault. Not

completing these steps will result in a deployment error. For more information, see Verify if soft delete is enabled on a key

vault and enable soft delete.

For existing FHIR accounts, you can view the key encryption choice (Ser vice-managed key or Customer-

managed key) in the Database blade as shown below. The configuration option can't be modified once it's

selected. However, you can modify and update your key.

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk#add-access-policy
https://docs.microsoft.com/en-us/azure/key-vault/general/key-vault-recovery?tabs=azure-portal#verify-if-soft-delete-is-enabled-on-a-key-vault-and-enable-soft-delete

 Using Azure PowerShell

New-AzHealthcareApisService
 -Name "myService"
 -Kind "fhir-R4"
 -ResourceGroupName "myResourceGroup"
 -Location "westus2"
 -CosmosKeyVaultKeyUri "https://<my-vault>.vault.azure.net/keys/<my-key>"

 Using Azure CLI

az healthcareapis service create
 --resource-group "myResourceGroup"
 --resource-name "myResourceName"
 --kind "fhir-R4"
 --location "westus2"
 --cosmos-db-configuration key-vault-key-uri="https://<my-vault>.vault.azure.net/keys/<my-key>"

 Using Azure Resource Manager Template

In addition, you can create a new version of the specified key, after which your data will get encrypted with the

new version without any service interruption. You can also remove access to the key to remove access to the

data. When the key is disabled, queries will result in an error. If the key is re-enabled, queries will succeed again.

With your Azure Key Vault key URI, you can configure CMK using PowerShell by running the PowerShell

command below:

As with PowerShell method, you can configure CMK by passing your Azure Key Vault key URI under the

key-vault-key-uri parameter and running the CLI command below:

With your Azure Key Vault key URI, you can configure CMK by passing it under the keyVaultKeyUri property in

the proper ties object.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "services_myService_name": {
 "defaultValue": "myService",
 "type": "String"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.HealthcareApis/services",
 "apiVersion": "2020-03-30",
 "name": "[parameters('services_myService_name')]",
 "location": "westus2",
 "kind": "fhir-R4",
 "properties": {
 "accessPolicies": [],
 "cosmosDbConfiguration": {
 "offerThroughput": 400,
 "keyVaultKeyUri": "https://<my-vault>.vault.azure.net/keys/<my-key>"
 },
 "authenticationConfiguration": {
 "authority": "https://login.microsoftonline.com/72f988bf-86f1-41af-91ab-2d7cd011db47",
 "audience": "[concat('https://', parameters('services_myService_name'),
'.azurehealthcareapis.com')]",
 "smartProxyEnabled": false
 },
 "corsConfiguration": {
 "origins": [],
 "headers": [],
 "methods": [],
 "maxAge": 0,
 "allowCredentials": false
 }
 }
 }
]
}

$resourceGroupName = "myResourceGroup"
$accountName = "mycosmosaccount"
$accountLocation = "West US 2"
$keyVaultKeyUri = "https://<my-vault>.vault.azure.net/keys/<my-key>"

New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateFile "deploy.json" `
 -accountName $accountName `
 -location $accountLocation `
 -keyVaultKeyUri $keyVaultKeyUri

 Next steps

And you can deploy the template with the following PowerShell script:

In this article, you learned how to configure customer-managed keys at rest using the Azure portal, PowerShell,

CLI, and Resource Manager Template. You can refer to the Azure Cosmos DB FAQ section for more information.

Cosmos DB: how to setup CMK

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk

Configure cross-origin resource sharing in Azure
API for FHIR

 3/11/2021 • 2 minutes to read • Edit Online

Azure API for Fast Healthcare Interoperability Resources (FHIR) supports cross-origin resource sharing (CORS).

CORS allows you to configure settings so that applications from one domain (origin) can access resources from

a different domain, known as a cross-domain request.

CORS is often used in a single-page app that must call a RESTful API to a different domain.

To configure a CORS setting in the Azure API for FHIR, specify the following settings:

Origins (Access-Control-Allow-Origin) . A list of domains allowed to make cross-origin requests to

the Azure API for FHIR. Each domain (origin) must be entered in a separate line. You can enter an asterisk

(*) to allow calls from any domain, but we don't recommend it because it's a security risk.

Headers (Access-Control-Allow-Headers) . A list of headers that the origin request will contain. To

allow all headers, enter an asterisk (*).

Methods (Access-Control-Allow-Methods) . The allowed methods (PUT, GET, POST, and so on) in an

API call. Choose Select all for all methods.

Max age (Access-Control-Max-Age) . The value in seconds to cache preflight request results for

Access-Control-Allow-Headers and Access-Control-Allow-Methods.

Allow credentials (Access-Control-Allow-Credentials) . CORS requests normally don’t include

cookies to prevent cross-site request forgery (CSRF) attacks. If you select this setting, the request can be

made to include credentials, such as cookies. You can't configure this setting if you already set Origins

with an asterisk (*).

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-cross-origin-resource-sharing.md
https://wikipedia.org/wiki/Cross-Origin_Resource_Sharing
https://en.wikipedia.org/wiki/Cross-site_request_forgery

NOTE

 Next steps

You can't specify different settings for different domain origins. All settings (Headers , Methods, Max age, and Allow

credentials) apply to all origins specified in the Origins setting.

In this article, you learned how to configure cross-origin sharing in Azure API for FHIR. Next deploy a fully

managed Azure API for FHIR:

Deploy Azure API for FHIR

Configure export setting and set up the storage
account

 5/17/2021 • 2 minutes to read • Edit Online

 Enabling Managed Identity on Azure API for FHIR

 Adding permission to storage account

Azure API for FHIR supports $export command that allows you to export the data out of Azure API for FHIR

account to a storage account.

There are three steps involved in configuring export in Azure API for FHIR:

1. Enable Managed Identity on Azure API for FHIR Service.

2. Creating a Azure storage account (if not done before) and assigning permission to Azure API for FHIR to the

storage account.

3. Selecting the storage account in Azure API for FHIR as export storage account.

The first step in configuring Azure API for FHIR for export is to enable system wide managed identity on the

service. For more information about managed identities in Azure, see About managed identities for Azure

resources.

To do so, go to the Azure API for FHIR service and select Identity . Changing the status to On will enable

managed identity in Azure API for FHIR Service.

Now, you can move to the next step by creating a storage account and assign permission to our service.

The next step in export data is to assign permission for Azure API for FHIR service to write to the storage

account.

After you've created a storage account, go to the Access Control (IAM) in the storage account, and then select

Add role assignment.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-export-data.md
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

 Selecting the storage account for $export

For more information about assigning roles in the Azure portal, see Azure built-in roles.

It is here that you'll add the role Storage Blob Data Contributor to our service name, and then select Save.

Now you are ready to select the storage account in Azure API for FHIR as a default storage account for $export.

The final step is to assign the Azure storage account that Azure API for FHIR will use to export the data to. To do

this, go to Integration in Azure API for FHIR service and select the storage account.

https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#storage-blob-data-contributor

NOTE

After you've completed this final step, you are now ready to export the data using $export command.

Only storage accounts in the same subscription as that for Azure API for FHIR are allowed to be registered as the

destination for $export operations.

For more information about configuring database settings, access control, enabling diagnostic logging, and

using custom headers to add data to audit logs, see:

Additional Settings

Configure private link
 5/28/2021 • 3 minutes to read • Edit Online

NOTE

 Prerequisites

 Create private endpoint

NOTE

 Auto approval

Private link enables you to access Azure API for FHIR over a private endpoint, which is a network interface that

connects you privately and securely using a private IP address from your virtual network. With private link, you

can access our services securely from your VNet as a first party service without having to go through a public

Domain Name System (DNS). This article describes how to create, test, and manage your private endpoint for

Azure API for FHIR.

Neither Private Link nor Azure API for FHIR can be moved from one resource group or subscription to another once

Private Link is enabled. To make a move, delete the Private Link first, then move Azure API for FHIR. Create a new Private

Link once the move is complete. Assess potential security ramifications before deleting Private Link.

If exporting audit logs and metrics is enabled for Azure API for FHIR, update the export setting through Diagnostic

Settings from the portal.

Before creating a private endpoint, there are some Azure resources that you'll need to create first:

Resource Group – The Azure resource group that will contain the virtual network and private endpoint.

Azure API for FHIR – The FHIR resource you would like to put behind a private endpoint.

Virtual Network – The VNet to which your client services and Private Endpoint will be connected.

For more information, see Private Link Documentation.

To create a private endpoint, a developer with Role-based access control (RBAC) permissions on the FHIR

resource can use the Azure portal, Azure PowerShell, or Azure CLI. This article will guide you through the steps

on using Azure portal. Using the Azure portal is recommended as it automates the creation and configuration of

the Private DNS Zone. For more information, see Private Link Quick Start Guides.

There are two ways to create a private endpoint. Auto Approval flow allows a user that has RBAC permissions on

the FHIR resource to create a private endpoint without a need for approval. Manual Approval flow allows a user

without permissions on the FHIR resource to request a private endpoint to be approved by owners of the FHIR

resource.

When an approved private endpoint is created for Azure API for FHIR, public traffic to it is automatically disabled.

Ensure the region for the new private endpoint is the same as the region for your virtual network. The region for

your FHIR resource can be different.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/configure-private-link.md
https://docs.microsoft.com/en-us/azure/private-link/index
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-powershell
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-cli
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-portal

For the resource type, search and select Microsoft.HealthcareApis/ser vices . For the resource, select the FHIR

resource. For target sub-resource, select FHIR .

If you do not have an existing Private DNS Zone set up, select (New)privatelink .azurehealthcareapis.com . If

you already have your Private DNS Zone configured, you can select it from the list. It must be in the format of

pr ivatelink .azurehealthcareapis.com .

 Manual Approval

 Test private endpoint

After the deployment is complete, you can go back to Pr ivate endpoint connections tab of which you'll

notice Approved as the connection state.

For manual approval, select the second option under Resource, "Connect to an Azure resource by resource ID or

alias". For Target sub-resource, enter "fhir" as in Auto Approval.

After the deployment is complete, you can go back to "Private endpoint connections" tab, on which you can

Approve, Reject, or Remove your connection.

To ensure that your FHIR server is not receiving public traffic after disabling public network access, select the

NOTE

 Manage private endpoint
 View

 Delete

/metadata endpoint for your server from your computer. You should receive a 403 Forbidden.

It can take up to 5 minutes after updating the public network access flag before public traffic is blocked.

To ensure your private endpoint can send traffic to your server :

1. Create a virtual machine (VM) that is connected to the virtual network and subnet your private endpoint is

configured on. To ensure your traffic from the VM is only using the private network, disable the outbound

internet traffic using the network security group (NSG) rule.

2. RDP into the VM.

3. Access your FHIR server ’s /metadata endpoint from the VM. You should receive the capability statement as a

response.

Private endpoints and the associated network interface controller (NIC) are visible in Azure portal from the

resource group they were created in.

Private endpoints can only be deleted from the Azure portal from the Over view blade or by selecting the

Remove option under the Networking Pr ivate endpoint connections tab. Selecting Remove will delete the

private endpoint and the associated NIC. If you delete all private endpoints to the FHIR resource and the public

network, access is disabled and no request will make it to your FHIR server.

Overview of FHIR search
 5/25/2021 • 7 minutes to read • Edit Online

GET {{FHIR_URL}}/Patient

 Search parameters

SEA RC H PA RA M ET ER
T Y P E SUP P O RT ED - PA A S

SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T

number Yes Yes Yes

date Yes Yes Yes

string Yes Yes Yes

token Yes Yes Yes

reference Yes Yes Yes

composite Partial Partial Partial The list of supported
composite types is
described later in this
article

The FHIR specification defines the fundamentals of search for FHIR resources. This article will guide you through

some key aspects to searching resources in FHIR. For complete details about searching FHIR resources, refer to

Search in the HL7 FHIR Specification. Throughout this article, we will give examples of search syntax. Each

search will be against your FHIR server, which typically has a URL of

https://<FHIRSERVERNAME>.azurewebsites.net . In the examples, we will use the placeholder {{FHIR_URL}} for this

URL.

FHIR searches can be against a specific resource type, a specified compartment, or all resources. The simplest

way to execute a search in FHIR is to use a GET request. For example, if you want to pull all patients in the

database, you could use the following request:

You can also search using POST , which is useful if the query string is too long. To search using POST , the search

parameters can be submitted as a form body. This allows for longer, more complex series of query parameters

that might be difficult to see and understand in a query string.

If the search request is successful, you’ll receive a FHIR bundle response with the type searchset . If the search

fails, you’ll find the error details in the OperationOutcome to help you understand why the search failed.

In the following sections, we’ll cover the various aspects involved in searching. Once you’ve reviewed these

details, refer to our samples page that has examples of searches that you can make in the Azure API for FHIR.

When you do a search, you'll search based on various attributes of the resource. These attributes are called

search parameters. Each resource has a set of defined search parameters. The search parameter must be defined

and indexed in the database for you to successfully search against it.

Each search parameter has a defined data types. The support for the various data types is outlined below:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/overview-of-search.md
https://www.hl7.org/fhir/search.html
https://www.hl7.org/fhir/compartmentdefinition.html
https://www.hl7.org/fhir/search.html#ptypes

quantity Yes Yes Yes

uri Yes Yes Yes

special No No No

SEA RC H PA RA M ET ER
T Y P E SUP P O RT ED - PA A S

SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T

 Common search parameters

C O M M O N SEA RC H
PA RA M ET ER SUP P O RT ED - PA A S

SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T

_id Yes Yes Yes

_lastUpdated Yes Yes Yes

_tag Yes Yes Yes

_type Yes Yes Yes

_security Yes Yes Yes

_profile Yes Yes Yes If you created your
R4 database before
February 20, 2021,
you’ll need to run a
reindex job to enable
_profile.

_has Partial Yes Partial Support for _has is in
MVP in the Azure
API for FHIR and the
OSS version backed
by Cosmos DB. More
details are included
under the chaining
section below.

_query No No No

_filter No No No

_list No No No

_text No No No

_content No No No

 Resource-specific parameters

There are common search parameters that apply to all resources. These are listed below, along with their

support within the Azure API for FHIR:

With the Azure API for FHIR, we support almost all resource-specific search parameters defined by the FHIR

specification. The only search parameters we don’t support are available in the links below:

https://www.hl7.org/fhir/search.html#all
https://www.hl7.org/fhir/searchparameter-registry.html

GET {{FHIR_URL}}/metadata

NOTE

 Composite search parameters

NOTE

 Modifiers & prefixes

M O DIF IERS SUP P O RT ED - PA A S SUP P O RT ED - O SS (SQ L)
SUP P O RT ED - O SS
(C O SM O S DB)

:missing Yes Yes Yes

:exact Yes Yes Yes

:contains Yes Yes Yes

STU3 Unsupported Search Parameters

R4 Unsupported Search Parameters

You can also see the current support for search parameters in the FHIR Capability Statement with the following

request:

To see the search parameters in the capability statement, navigate to

CapabilityStatement.rest.resource.searchParam to see the search parameters for each resource and

CapabilityStatement.rest.searchParam to find the search parameters for all resources.

The Azure API for FHIR does not automatically create or index any search parameters that are not defined by the FHIR

specification. However, we do provide support for you to to define your own search parameters.

Composite search allows you to search against value pairs. For example, if you were searching for a height

observation where the person was 60 inches, you would want to make sure that a single component of the

observation contained the code of height and the value of 60. You wouldn't want to get an observation where a

weight of 60 and height of 48 was stored, even though the observation would have entries that qualified for

value of 60 and code of height, just in different component sections.

With the Azure API for FHIR, we support the following search parameter type pairings:

Reference, Token

Token, Date

Token, Number, Number

Token, Quantity

Token, String

Token, Token

For more information, see the HL7 Composite Search Parameters.

Composite search parameters do not support modifiers per the FHIR specification.

Modifiers allow you to modify the search parameter. Below is an overview of all the FHIR modifiers and the

support in the Azure API for FHIR.

https://github.com/microsoft/fhir-server/blob/main/src/Microsoft.Health.Fhir.Core/Data/Stu3/unsupported-search-parameters.json
https://github.com/microsoft/fhir-server/blob/main/src/Microsoft.Health.Fhir.Core/Data/R4/unsupported-search-parameters.json
https://www.hl7.org/fhir/capabilitystatement.html
https://www.hl7.org/fhir/search.html#composite
https://www.hl7.org/fhir/search.html#modifiers

:text Yes Yes Yes

:type (reference) Yes Yes Yes

:not Yes Yes Yes

:below (uri) Yes Yes Yes

:above (uri) Yes Yes Yes

:in (token) No No No

:below (token) No No No

:above (token) No No No

:not-in (token) No No No

M O DIF IERS SUP P O RT ED - PA A S SUP P O RT ED - O SS (SQ L)
SUP P O RT ED - O SS
(C O SM O S DB)

 Search result parameters

SEA RC H RESULT
PA RA M ET ERS SUP P O RT ED - PA A S

SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T S

_elements Yes Yes Yes

_count Yes Yes Yes _count is limited to
1000 resources. If it's
set higher than 1000,
only 1000 will be
returned and a
warning will be
returned in the
bundle.

_include Yes Yes Yes Included items are
limited to 100.
_include on PaaS and
OSS on Cosmos DB
do not include
:iterate support
(#1313).

_revinclude Yes Yes Yes Included items are
limited to 100.
_revinclude on PaaS
and OSS on Cosmos
DB do not include
:iterate support
(#1313). Issue #1319

For search parameters that have a specific order (numbers, dates, and quantities), you can use a prefix on the

parameter to help with finding matches. The Azure API for FHIR supports all prefixes.

To help manage the returned resources, there are search result parameters that you can use in your search. For

details on how to use each of the search result parameters, refer to the HL7 website.

https://www.hl7.org/fhir/search.html#prefix
https://www.hl7.org/fhir/search.html#return
https://github.com/microsoft/fhir-server/issues/1313
https://github.com/microsoft/fhir-server/issues/1313
https://github.com/microsoft/fhir-server/issues/1319

_summary Yes Yes Yes

_total Partial Partial Partial _total=none and
_total=accurate

_sort Partial Partial Partial sort=_lastUpdated is
supported. For Azure
API for FHIR and OSS
Cosmos DB
databases created
after April 20, 2021
sort is also
supported on first
name, last name, and
clinical date.

_contained No No No

_containedType No No No

_score No No No

SEA RC H RESULT
PA RA M ET ERS SUP P O RT ED - PA A S

SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T S

 Chained & reverse chained searching

NOTE

 Pagination

By default, the Azure API for FHIR is set to lenient handling. This means that the server will ignore any unknown

or unsupported parameters. If you want to use strict handling, you can use the Prefer header and set

handling=strict .

A chained search allows you to search using a search parameter on a resource referenced by another resource.

For example, if you want to find encounters where the patient’s name is Jane, use:

GET {{FHIR_URL}}/Encounter?subject:Patient.name=Jane

Similarly, you can do a reverse chained search. This allows you to get resources where you specify criteria on

other resources that refer to them. For more examples of chained and reverse chained search, refer to the FHIR

search examples page.

In the Azure API for FHIR and the open source backed by Cosmos DB, there's a limitation where each subquery required

for the chained and reverse chained searches will only return 100 items. If there are more than 100 items found, you’ll

receive the following error message: “Subqueries in a chained expression can't return more than 100 results, please use a

more selective criteria.” To get a successful query, you’ll need to be more specific in what you are looking for.

As mentioned above, the results from a search will be a paged bundle. By default, the search will return 10

results per page, but this can be increased (or decreased) by specifying _count . Within the bundle, there will be

a self link that contains the current result of the search. If there are additional matches, the bundle will contain a

next link. You can continue to use the next link to get the subsequent pages of results. _count is limited to 1000

items or less.

Currently, the Azure API for FHIR only supports the next link in bundles, and it doesn’t support first, last, or

https://www.hl7.org/fhir/search.html#chaining

 Next steps

previous links.

Now that you've learned about the basics of search, see the search samples page for details about how to search

using different search parameters, modifiers, and other FHIR search scenarios.

FHIR search examples

Defining custom search parameters
 5/25/2021 • 5 minutes to read • Edit Online

NOTE

 Create new search parameter

The FHIR specification defines a set of search parameters for all resources and search parameters that are

specific to a resource(s). However, there are scenarios where you might want to search against an element in a

resource that isn’t defined by the FHIR specification as a standard search parameter. This article describes how

you can define your own search parameters to be used in the Azure API for FHIR.

Each time you create, update, or delete a search parameter you’ll need to run a reindex job to enable the search

parameter to be used in production. Below we will outline how you can test search parameters before reindexing the

entire FHIR server.

To create a new search parameter, you POST the SearchParameter resource to the database. The code example

below shows how to add the US Core Race SearchParameter to the Patient resource.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/how-to-do-custom-search.md
https://www.hl7.org/fhir/searchparameter.html
http://hl7.org/fhir/us/core/STU3.1.1/SearchParameter-us-core-race.html

POST {{FHIR_URL}}/SearchParameter

{
 "resourceType" : "SearchParameter",
 "id" : "us-core-race",
 "url" : "http://hl7.org/fhir/us/core/SearchParameter/us-core-race",
 "version" : "3.1.1",
 "name" : "USCoreRace",
 "status" : "active",
 "date" : "2019-05-21",
 "publisher" : "US Realm Steering Committee",
 "contact" : [
 {
 "telecom" : [
 {
 "system" : "other",
 "value" : "http://www.healthit.gov/"
 }
]
 }
],
 "description" : "Returns patients with a race extension matching the specified code.",
 "jurisdiction" : [
 {
 "coding" : [
 {
 "system" : "urn:iso:std:iso:3166",
 "code" : "US",
 "display" : "United States of America"
 }
]
 }
],
 "code" : "race",
 "base" : [
 "Patient"
],
 "type" : "token",
 "expression" : "Patient.extension.where(url = 'http://hl7.org/fhir/us/core/StructureDefinition/us-core-
race').extension.value.code"
}

NOTE
The new search parameter will appear in the capability statement of the FHIR server after you POST the search parameter

to the database and reindex your database. Viewing the SearchParameter in the capability statement is the only way

tell if a search parameter is supported in your FHIR server. If you can find the search parameter by searching for the

search parameter but cannot see it in the capability statement, you still need to index the search parameter. You can POST

multiple search parameters before triggering a reindex operation.

Important elements of a SearchParameter :

ur l : A unique key to describe the search parameter. Many organizations, such as HL7, use a standard URL

format for the search parameters that they define, as shown above in the US Core race search parameter.

code: The value stored in code is what you’ll use when searching. For the example above, you would

search with GET {FHIR_URL}/Patient?race=<code> to get all patients of a specific race. The code must be

unique for the resource(s) the search parameter applies to.

base: Describes which resource(s) the search parameter applies to. If the search parameter applies to all

resources, you can use Resource ; otherwise, you can list all the relevant resources.

 Test search parameters

GET https://{{FHIR_URL}}/{{RESOURCE}}/{{RESOUCE_ID}}/$reindex

GET https://{{FHIR_URL}}/Patient/{{PATIENT_ID}}/$reindex

{
 "resourceType": "Parameters",
 "id": "8be24e78-b333-49da-a861-523491c3437a",
 "meta": {
 "versionId": "1"
 },
 "parameter": [
 {
 "name": "deceased",
 "valueString": "http://hl7.org/fhir/special-values|false"
 },
 {
 "name": "language",
 "valueString": "urn:ietf:bcp:47|en-US"
 },
 {
 "name": "race",
 "valueString": "2028-9"
 },
...

POST https://{{FHIR_URL}/{{RESOURCE}}/{{RESOURCE_ID}}/$reindex

type: Describes the data type for the search parameter. Type is limited by the support for the Azure API

for FHIR. This means that you cannot define a search parameter of type Special or define a composite

search parameter unless it is a supported combination.

expression: Describes how to calculate the value for the search. When describing a search parameter,

you must include the expression, even though it is not required by the specification. This is because you

need either the expression or the xpath syntax and the Azure API for FHIR ignores the xpath syntax.

While you cannot use the search parameters in production until you run a reindex job, there are a few ways to

test your search parameters before reindexing the entire database.

First, you can test your new search parameter to see what values will be returned. By running the command

below against a specific resource instance (by inputting their ID), you'll get back a list of value pairs with the

search parameter name and the value stored for the specific patient. This will include all of the search

parameters for the resource and you can scroll through to find the search parameter you created. Running this

command will not change any behavior in your FHIR server.

For example, to find all search parameters for a patient:

The result will look like this:

Once you see that your search parameter is displaying as expected, you can reindex a single resource to test

searching with the element. First you will reindex a single resource:

Running this, sets the indices for any search parameters for the specific resource that you defined for that

POST https://{{FHIR_URL}/Patient/{{PATIENT_ID}}/$reindex

GET https://{{FHIR_URL}}/Patient?race=2028-9
x-ms-use-partial-indices: true

 Update a search parameter

NOTE

resource type. This does make an update to the FHIR server. Now you can search and set the use partial indices

header to true, which means that it will return results where any of the resources has the search parameter

indexed, even if not all resources of that type have it indexed.

Continuing with our example above, you could index one patient to enable the US Core Race SearchParameter :

And then search for patients that have a specific race:

After you have tested and are satisfied that your search parameter is working as expected, run or schedule your

reindex job so the search parameters can be used in the FHIR server for production use cases.

To update a search parameter, use PUT to create a new version of the search parameter. You must include the

SearchParameter ID in the id element of the body of the PUT request and in the PUT call.

If you don't know the ID for your search parameter, you can search for it. Using GET {{FHIR_URL}}/SearchParameter

will return all custom search parameters, and you can scroll through the search parameter to find the search parameter

you need. You could also limit the search by name. With the example below, you could search for name using

USCoreRace: GET {{FHIR_URL}}/SearchParameter?name=USCoreRace .

PUT {{FHIR_ULR}}/SearchParameter/{SearchParameter ID}

{
 "resourceType" : "SearchParameter",
 "id" : "SearchParameter ID",
 "url" : "http://hl7.org/fhir/us/core/SearchParameter/us-core-race",
 "version" : "3.1.1",
 "name" : "USCoreRace",
 "status" : "active",
 "date" : "2019-05-21",
 "publisher" : "US Realm Steering Committee",
 "contact" : [
 {
 "telecom" : [
 {
 "system" : "other",
 "value" : "http://www.healthit.gov/"
 }
]
 }
],
 "description" : "New Description!",
 "jurisdiction" : [
 {
 "coding" : [
 {
 "system" : "urn:iso:std:iso:3166",
 "code" : "US",
 "display" : "United States of America"
 }
]
 }
],
 "code" : "race",
 "base" : [
 "Patient"
],
 "type" : "token",
 "expression" : "Patient.extension.where(url = 'http://hl7.org/fhir/us/core/StructureDefinition/us-core-
race').extension.value.code"
}

WARNING

 Delete a search parameter

Delete {{FHIR_URL}}/SearchParameter/{SearchParameter ID}

The result will be an updated SearchParameter and the version will increment.

Be careful when updating SearchParameters that have already been indexed in your database. Changing an existing

SearchParameter’s behavior could have impacts on the expected behavior. We recommend running a reindex job

immediately.

If you need to delete a search parameter, use the following:

WARNING

 Next steps

Be careful when deleting SearchParameters that have already been indexed in your database. Changing an existing

SearchParameter’s behavior could have impacts on the expected behavior. We recommend running a reindex job

immediately.

In this article, you’ve learned how to create a search parameter. Next you can learn how to reindex your FHIR

server.

How to run a reindex job

Running a reindex job
 5/25/2021 • 4 minutes to read • Edit Online

WARNING

 How to run a reindex job

POST {{FHIR URL}}/$reindex

{

“resourceType”: “Parameters”,

“parameter”: []

}

There are scenarios where you may have search or sort parameters in the Azure API for FHIR that haven't yet

been indexed. This is particularly relevant when you define your own search parameters. Until the search

parameter is indexed, it can't be used in search. This article covers an overview of how to run a reindex job to

index any search or sort parameters that have not yet been indexed in your database.

It's important that you read this entire article before getting started. A reindex job can be very performance intensive.

This article includes options for how to throttle and control the reindex job.

To start a reindex job, use the following code example:

If the request is successful, a status of 201 Created gets returned. The result of this message will look like:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/how-to-run-a-reindex.md

HTTP/1.1 201 Created
Content-Location: https://{{FHIR URL}}/_operations/reindex/560c7c61-2c70-4c54-b86d-c53a9d29495e

{
 "resourceType": "Parameters",
 "id": "560c7c61-2c70-4c54-b86d-c53a9d29495e",
 "meta": {
 "versionId": "\"4c0049cd-0000-0100-0000-607dc5a90000\""
 },
 "parameter": [
 {
 "name": "id",
 "valueString": "560c7c61-2c70-4c54-b86d-c53a9d29495e"
 },
 {
 "name": "queuedTime",
 "valueDateTime": "2021-04-19T18:02:17.0118558+00:00"
 },
 {
 "name": "totalResourcesToReindex",
 "valueDecimal": 0.0
 },
 {
 "name": "resourcesSuccessfullyReindexed",
 "valueDecimal": 0.0
 },
 {
 "name": "progress",
 "valueDecimal": 0.0
 },
 {
 "name": "status",
 "valueString": "Queued"
 },
 {
 "name": "maximumConcurrency",
 "valueDecimal": 1.0
 },
 {
 "name": "resources",
 "valueString": ""
 },
 {
 "name": "searchParams",
 "valueString": ""
 }
]
}

NOTE

 How to check the status of a reindex job

To check the status of or to cancel a reindex job, you’ll need the reindex ID. This is the ID of the resulting Parameters

resource. In the example above, the ID for the reindex job would be 560c7c61-2c70-4c54-b86d-c53a9d29495e .

Once you’ve started a reindex job, you can check the status of the job using the following:

GET {{FHIR URL}}/_operations/reindex/{{reindexJobId}

The status of the reindex job result is shown below:

{

 "resourceType": "Parameters",
 "id": "b65fd841-1c62-47c6-898f-c9016ced8f77",
 "meta": {

 "versionId": "\"1800f05f-0000-0100-0000-607a1a7c0000\""
 },
 "parameter": [

 {

 "name": "id",
 "valueString": "b65fd841-1c62-47c6-898f-c9016ced8f77"
 },
 {

 "name": "startTime",
 "valueDateTime": "2021-04-16T23:11:35.4223217+00:00"
 },
 {

 "name": "queuedTime",
 "valueDateTime": "2021-04-16T23:11:29.0288163+00:00"
 },
 {

 "name": "totalResourcesToReindex",
 "valueDecimal": 262544.0
 },
 {

 "name": "resourcesSuccessfullyReindexed",
 "valueDecimal": 5754.0
 },
 {

 "name": "progress",
 "valueDecimal": 2.0
 },
 {

 "name": "status",
 "valueString": "Running"
 },
 {

 "name": "maximumConcurrency",
 "valueDecimal": 1.0
 },
 {

 "name": "resources",
 "valueString":
 "{LIST OF IMPACTED RESOURCES}"
 },
 {

The following information is shown in the reindex job result:

totalResourcesToReindex: Includes the total number of resources that are being reindexed as part of

the job.

resourcesSuccessfullyReindexed: The total that have already been successfully reindexed.

progress : Reindex job percent complete. Equals

 Delete a reindex job

 Performance considerations

NOTE

PA RA M ET ER DESC RIP T IO N DEFA ULT REC O M M EN DED RA N GE

QueryDelayIntervalInMillise
conds

This is the delay between
each batch of resources
being kicked off during the
reindex job.

500 MS (.5 seconds) 50 to 5000: 50 will speed
up the reindex job and
5000 will slow it down from
the default.

MaximumResourcesPerQuer
y

This is the maximum
number of resources
included in the batch of
resources to be reindexed.

100 1-500

MaximumConcurreny This is the number of
batches done at a time.

1 1-5

targetDataStoreUsagePerce
ntrage

This allows you to specify
what percent of your data
store to use for the reindex
job. For example, you could
specify 50% and that would
ensure that at most the
reindex job would use 50%
of available RUs on Cosmos
DB.

No present, which means
that up to 100% can be
used.

1-100

resourcesSuccessfullyReindexed/totalResourcesToReindex x 100.

status : This will state if the reindex job is queued, running, complete, failed, or canceled.

resources : This lists all the resource types impacted by the reindex job.

If you need to cancel a reindex job, use a delete call and specify the reindex job ID:

Delete {{FHIR URL}}/_operations/reindex/{{reindexJobId}

A reindex job can be quite performance intensive. We’ve implemented some throttling controls to help you

manage how a reindex job will run on your database.

It is not uncommon on large datasets for a reindex job to run for days. For a database with 30,000,000 million resources,

we noticed that it took 4-5 days at 100K RUs to reindex the entire database.

Below is a table outlining the available parameters, defaults, and recommended ranges. You can use these

parameters to either speed up the process (use more compute) or slow down the process (use less compute).

For example, you could run the reindex job on a low traffic time and increase your compute to get it done

quicker. Instead, you could use the settings to ensure a very low usage of compute and have it run for days in

the background.

If you want to use any of the parameters above, you can pass them into the Parameters resource when you start

the reindex job.

{
 "resourceType": "Parameters",
 "parameter": [
 {
 "name": "maximumConcurrency",
 "valueInteger": "3"
 },
 {
 "name": "targetDataStoreUsagePercentage",
 "valueInteger": "20"
 },
 {
 "name": "queryDelayIntervalInMilliseconds",
 "valueInteger": "1000"
 },
 {
 "name": "maximumNumberOfResourcesPerQuery",
 "valueInteger": "1"
 }
]
}

 Next steps
In this article, you’ve learned how to start a reindex job. To learn how to define new search parameters that

require the reindex job, see

Defining custom search parameters

FHIR search examples
 5/25/2021 • 7 minutes to read • Edit Online

 Search result parameters
 _include

 GET [your-fhir-server]/MedicationRequest?_include=MedicationRequest:patient

NOTE

 _revinclude

GET [your-fhir-server]/Patient?_revinclude=Encounter:subject

 _elements

GET [your-fhir-server]/Patient?_elements=identifier,active

 Search modifiers
 :not

Below are some examples of using FHIR search operations, including search parameters and modifiers, chain

and reverse chain search, composite search, viewing the next entry set for search results, and searching with a

POST request. For more information about search, see Overview of FHIR Search.

_include searches across resources for the ones that include the specified parameter of the resource. For

example, you can search across MedicationRequest resources to find only the ones that include information

about the prescriptions for a specific patient, which is the reference parameter patient . In the example below,

this will pull all the MedicationRequests and all patients that are referenced from the MedicationRequests :

_include and _revinclude is limited to 100 items.

_revinclude allows you to search the opposite direction as _include . For example, you can search for patients

and then reverse include all encounters that reference the patients:

_elements narrows down the search result to a subset of fields to reduce the response size by omitting

unnecessary data. The parameter accepts a comma-separated list of base elements:

In this request, you'll get back a bundle of patients, but each resource will only include the identifier(s) and the

patient's active status. Resources in this returned response will contain a meta.tag value of SUBSETTED to

indicate that they're an incomplete set of results.

:not allows you to find resources where an attribute is not true. For example, you could search for patients

where the gender is not female:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/search-samples.md

GET [your-fhir-server]/Patient?gender:not=female

 :missing

GET [your-fhir-server]/Patient?birthdate:missing=true

 :exact

GET [your-fhir-server]/Patient?name:exact=Jon

 :contains

GET [your-fhir-server]/Patient?address:contains=Meadow

 Chained search

 GET [your-fhir-server]/DiagnosticReport?subject:Patient.name=Sarah

As a return value, you would get all patient entries where the gender is not female, including empty values

(entries specified without gender). This is different than searching for Patients where gender is male, since that

would not include the entries without a specific gender.

:missing returns all resources that don't have a value for the specified element when the value is true , and

returns all the resources that contain the specified element when the value is false . For simple data type

elements, :missing=true will match on all resources where the element is present with extensions but has an

empty value. For example, if you want to find all Patient resources that are missing information on birth date,

you can do:

:exact is used for string parameters, and returns results that match the parameter precisely, such as in casing

and character concatenating.

This request returns Patient resources that have the name exactly the same as Jon . If the resource had

Patients with names such as Jonathan or joN , the search would ignore and skip the resource as it does not

exactly match the specified value.

:contains is used for string parameters and searches for resources with partial matches of the specified

value anywhere in the string within the field being searched. contains is case insensitive and allows character

concatenating. For example:

This request would return you all Patient resources with address fields that have values that contain the

string "Meadow". This means you could have addresses that include values such as "Meadowers" or "59

Meadow ST" returned as search results.

To perform a series of search operations that cover multiple reference parameters, you can "chain" the series of

reference parameters by appending them to the server request one by one using a period . . For example, if

you want to view all DiagnosticReport resources with a subject reference to a Patient resource that includes

a particular name :

GET [your-fhir-server]/Encounter?subject=Patient/78a14cbe-8968-49fd-a231-d43e6619399f

GET [your-fhir-server]/Encounter?subject:Patient.birthdate=1987-02-20

GET [your-fhir-server]/Patient?general-practitioner.name=Sarah&general-practitioner.address-state=WA

 Reverse chain search

GET [base]/Patient?_has:Observation:patient:code=527

This request would return all the resources with the patient subject named "Sarah". The period . after the field

Patient performs the chained search on the reference parameter of the subject parameter.

Another common use of a regular search (not a chained search) is finding all encounters for a specific patient.

Patient s will often have one or more Encounter s with a subject. To search for all Encounter resources for a

Patient with the provided id :

Using chained search, you can find all the Encounter resources that matches a particular piece of Patient

information, such as the birthdate :

This would allow not just searching Encounter resources for a single patient, but across all patients that have

the specified birth date value.

In addition, chained search can be done more than once in one request by using the symbol & , which allows

you to search for multiple conditions in one request. In such cases, chained search "independently" searches for

each parameter, instead of searching for conditions that only satisfy all the conditions at once. It's an OR

operation, not an AND operation. For instance, if you want to get all patients who had a practitioner with a

certain name or from a particular state:

This would return all Patient resources that have "Sarah" as the generalPractitioner , and all Patient

resources that have generalPractitioner that have the address with the state WA. In other words, you can have

Sarah from the state NY and Bill from the state WA both as the returned results. Chained search doesn't require

meeting all conditions and is evaluated individually per the parameter.

For scenarios in which the search has to be an AND operation that covers all conditions as a group, refer to the

composite search example below.

Chain search lets you search for resources based on the properties of resources they refer to. Using reverse

chain search, allows you do it the other way around. You can search for resources based on the properties of

resources that refer to them, using _has parameter. For example, Observation resource has a search parameter

patient referring to a Patient resource. To find all Patient resources that are referenced by Observation with a

specific code :

This request returns Patient resources that are referred by Observation with the code 527 .

In addition, reverse chain search can have a recursive structure. For example, if you want to search for all

patients that have Observation where the observation has an audit event from a specific user janedoe , you

could do:

GET [base]/Patient?_has:Observation:patient:_has:AuditEvent:entity:user=janedoe

NOTE

 Composite search

GET [your-fhir-server]/DiagnosticReport?result.code-value-quantity=2823-3$lt9.2

 Search the next entry set

 "resourceType": "Bundle",
 "id": "98731cb7-3a39-46f3-8a72-afe945741bd9",
 "meta": {
 "lastUpdated": "2021-04-22T09:58:16.7823171+00:00"
 },
 "type": "searchset",
 "link": [
 {
 "relation": "next",
 "url": "[your-fhir-server]/Patient?_sort=_lastUpdated&ct=WzUxMDAxNzc1NzgzODc5MjAwODBd"
 },
 {
 "relation": "self",
 "url": "[your-fhir-server]/Patient?_sort=_lastUpdated"
 }
],

In the Azure API for FHIR and the open-source FHIR server backed by Cosmos, the chained search and reverse chained

search is an MVP implementation. To accomplish chained search on Cosmos DB, the implementation walks down the

search expression and issues sub-queries to resolve the matched resources. This is done for each level of the expression. If

any query returns more than 100 results, an error will be thrown. By default, chained search is behind a feature flag. To

use the chained searching on Cosmos DB, use the header x-ms-enable-chained-search: true.

To search for resources that meet multiple conditions at once, use composite search that joins a sequence of

single parameter values with a symbol $. The returned result would be the intersection of the resources that

match all of the conditions specified by the joined search parameters. Such search parameters are called

composite search parameters, and they define a new parameter that combines the multiple parameters in a

nested structure. For example, if you want to find all DiagnosticReport resources that contain Observation with

a potassium value less than or equal to 9.2:

This request specifies the component containing a code of 2823-3 , which in this case would be potassium.

Following the $ symbol, it specifies the range of the value for the component using lt for "less than or equal

to" and 9.2 for the potassium value range.

The maximum number of entries that can be returned per a single search query is 1000. However, you might

have more than 1000 entries that match the search query, and you might want to see the next set of entries

after the first 1000 entries that were returned. In such case, you would use the continuation token url value in

searchset as in the Bundle result below:

And you would do a GET request for the provided URL under the field relation: next :

GET [your-fhir-server]/Patient?_sort=_lastUpdated&ct=WzUxMDAxNzc1NzgzODc5MjAwODBd

 Search using POST

POST [your-fhir-server]/Patient/_search?_id=45

POST [your-fhir-server]/Patient/_search
content-type: application/x-www-form-urlencoded

name=John

 Next steps

This will return the next set of entries for your search result. The searchset is the complete set of search result

entries, and the continuation token url is the link provided by the server for you to retrieve the entries that

don't show up on the first set because the restriction on the maximum number of entries returned for a search

query.

All of the search examples mentioned above have used GET requests. You can also do search operations using

POST requests using _search :

This request would return all Patient resources with the id value of 45. Just as in GET requests, the server

determines which of the set of resources meets the condition(s), and returns a bundle resource in the HTTP

response.

Another example of searching using POST where the query parameters are submitted as a form body is:

Overview of FHIR Search

How to validate FHIR resources against profiles
 5/25/2021 • 10 minutes to read • Edit Online

 FHIR profile: the basics

http://hl7.org/fhir/StructureDefinition/{profile}

 Base profile and custom profile

{
 "resourceType" : "StructureDefinition",
 "id" : "bmi",
...
}

HL7 FHIR defines a standard and interoperable way to store and exchange healthcare data. Even within the base

FHIR specification, it can be helpful to define additional rules or extensions based on the context that FHIR is

being used. For such context-specific uses of FHIR, FHIR profiles are used for the extra layer of specifications.

FHIR profile describes additional context, such as constraints or extensions, on a resource represented as a

StructureDefinition . The HL7 FHIR standard defines a set of base resources, and these standard base resources

have generic definitions. FHIR profile allows you to narrow down and customize resource definitions using

constraints and extensions.

Azure API for FHIR allows validating resources against profiles to see if the resources conform to the profiles.

This article walks through the basics of FHIR profile, and how to use $validate for validating resources against

the profiles when creating and updating resources.

A profile sets additional context on the resource, usually represented as a StructureDefinition resource.

StructureDefinition defines a set of rules on the content of a resource or a data type, such as what fields a

resource has and what values these fields can take. For example, profiles can restrict cardinality (e.g. setting the

maximum cardinality to 0 to rule out the element), restrict the contents of an element to a single fixed value, or

define required extensions for the resource. It can also specify additional constraints on an existing profile. A

StructureDefinition is identified by its canonical URL:

Where in the {profile} field, you specify the name of the profile.

For example:

http://hl7.org/fhir/StructureDefinition/patient-birthPlace is a base profile that requires information on

the registered address of birth of the patient.

http://hl7.org/fhir/StructureDefinition/bmi is another base profile that defines how to represent Body

Mass Index (BMI) observations.

http://hl7.org/fhir/us/core/StructureDefinition/us-core-allergyintolerance is a US Core profile that sets

minimum expectations for AllergyIntolerance resource associated with a patient, and identifies mandatory

fields such as extensions and value sets.

There are two types of profiles: base profile and custom profile. A base profile is a base StructureDefinition to

which a resource needs to conform to, and has been defined by base resources such as Patient or

Observation . For example, a Body Mass Index (BMI) Observation profile would start like this:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/validation-against-profiles.md
https://www.hl7.org/fhir/profiling.html

NOTE

N A M E URL

Us Core https://www.hl7.org/fhir/us/core/

CARIN Blue Button http://hl7.org/fhir/us/carin-bb/

Da Vinci Payer Data Exchange http://hl7.org/fhir/us/davinci-pdex/

Argonaut http://www.fhir.org/guides/argonaut/pd/

 Accessing profiles and storing profiles
 Storing profiles

POST http://<your FHIR service base URL>/{Resource}

POST http://my-fhir-server.azurewebsites.net/StructureDefinition?
url=http://hl7.org/fhir/us/core/StructureDefinition/us-core-allergyintolerance

A custom profile is a set of additional constraints on top of a base profile, restricting or adding resource

parameters that are not part of the base specification. Custom profile is useful because you can customize your

own resource definitions by specifying the constraints and extensions on the existing base resource. For

example, you might want to build a profile that shows AllergyIntolerance resource instances based on

Patient genders, in which case you would create a custom profile on top of an existing Patient profile with

AllergyIntolerance profile.

Custom profiles must build on top of the base resource and cannot conflict with the base resource. For example, if an

element has a cardinality of 1..1, the custom profile cannot make it optional.

Custom profiles also specified by various Implementation Guides. Some common Implementation Guides are:

For storing profiles to the server, you can do a POST request:

In which the field {Resource} will be replaced by StructureDefinition , and you would have your

StructureDefinition resource POST ed to the server in JSON or XML format. For example, if you would like to

store us-core-allergyintolerance profile, you would do:

Where the US Core Allergy Intolerance profile would be stored and retrieved:

https://www.hl7.org/fhir/us/core/
http://hl7.org/fhir/us/carin-bb/
http://hl7.org/fhir/us/davinci-pdex/
http://www.fhir.org/guides/argonaut/pd/

{
 "resourceType" : "StructureDefinition",
 "id" : "us-core-allergyintolerance",
 "text" : {
 "status" : "extensions"
 },
 "url" : "http://hl7.org/fhir/us/core/StructureDefinition/us-core-allergyintolerance",
 "version" : "3.1.1",
 "name" : "USCoreAllergyIntolerance",
 "title" : "US Core AllergyIntolerance Profile",
 "status" : "active",
 "experimental" : false,
 "date" : "2020-06-29",
 "publisher" : "HL7 US Realm Steering Committee",
 "contact" : [
 {
 "telecom" : [
 {
 "system" : "url",
 "value" : "http://www.healthit.gov"
 }
]
 }
],
 "description" : "Defines constraints and extensions on the AllergyIntolerance resource for the minimal
set of data to query and retrieve allergy information.",

...

Most profiles have the resource type StructureDefinition , but they can also be of the types ValueSet and

CodeSystem , which are terminology resources. For example, if you POST a ValueSet profile in a JSON form, the

server will return the stored profile with the assigned id for the profile, just as it would with

StructureDefinition . Below is an example you would get when you upload a Condition Severity profile, which

specifies the criteria for a condition/diagnosis severity grading:

http://hl7.org/fhir/terminologies.html
https://www.hl7.org/fhir/valueset-condition-severity.html

{
 "resourceType": "ValueSet",
 "id": "35ab90e5-c75d-45ca-aa10-748fefaca7ee",
 "meta": {
 "versionId": "1",
 "lastUpdated": "2021-05-07T21:34:28.781+00:00",
 "profile": [
 "http://hl7.org/fhir/StructureDefinition/shareablevalueset"
]
 },
 "text": {
 "status": "generated"
 },
 "extension": [
 {
 "url": "http://hl7.org/fhir/StructureDefinition/structuredefinition-wg",
 "valueCode": "pc"
 }
],
 "url": "http://hl7.org/fhir/ValueSet/condition-severity",
 "identifier": [
 {
 "system": "urn:ietf:rfc:3986",
 "value": "urn:oid:2.16.840.1.113883.4.642.3.168"
 }
],
 "version": "4.0.1",
 "name": "Condition/DiagnosisSeverity",
 "title": "Condition/Diagnosis Severity",
 "status": "draft",
 "experimental": false,
 "date": "2019-11-01T09:29:23+11:00",
 "publisher": "FHIR Project team",
...

 Viewing profiles

GET http://<your FHIR service base URL>/StructureDefinition?url={canonicalUrl}

GET http://my-fhir-server.azurewebsites.net/StructureDefinition?
url=http://hl7.org/fhir/us/core/StructureDefinition/us-core-goal

You can see that the resourceType is a ValueSet , and the url for the profile also specifies that this is a type

ValueSet : "http://hl7.org/fhir/ValueSet/condition-severity" .

You can access your existing custom profiles in the server using a GET request. All valid profiles, such as the

profiles with valid canonical URLs in Implementation Guides, should be accessible by querying:

Where the field {canonicalUrl} would be replaced with the canonical URL of your profile.

For example, if you want to view US Core Goal resource profile:

This will return the StructureDefinition resource for US Core Goal profile, that will start like this:

{
 "resourceType" : "StructureDefinition",
 "id" : "us-core-goal",
 "url" : "http://hl7.org/fhir/us/core/StructureDefinition/us-core-goal",
 "version" : "3.1.1",
 "name" : "USCoreGoalProfile",
 "title" : "US Core Goal Profile",
 "status" : "active",
 "experimental" : false,
 "date" : "2020-07-21",
 "publisher" : "HL7 US Realm Steering Committee",
 "contact" : [
 {
 "telecom" : [
 {
 "system" : "url",
 "value" : "http://www.healthit.gov"
 }
]
 }
],
 "description" : "Defines constraints and extensions on the Goal resource for the minimal set of data to
query and retrieve a patient's goal(s).",
...

 Profiles in the capability statement

{
 "resourceType": "StructureDefinition",
 "id": "us-core-patient",
 "url": "http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient",
 "version": "3.1.1",
 "name": "USCorePatientProfile",
 "title": "US Core Patient Profile",
 "status": "active",
 "experimental": false,
 "date": "2020-06-27",
 "publisher": "HL7 US Realm Steering Committee",
...

Our FHIR server does not return StructureDefinition instances for the base profiles, but they can be found

easily on the HL7 website, such as:

http://hl7.org/fhir/Observation.profile.json.html

http://hl7.org/fhir/Patient.profile.json.html

The Capability Statement lists all possible behaviors of your FHIR server to be used as a statement of the

server functionality, such as Structure Definitions and Value Sets. Azure API for FHIR updates the capability

statement with information on the uploaded and stored profiles in the forms of:

CapabilityStatement.rest.resource.profile

CapabilityStatement.rest.resource.supportedProfile

These will show all of the specification for the profile that describes the overall support for the resource,

including any constraints on cardinality, bindings, extensions, or other restrictions. Therefore, when you POST a

profile in the form of a StructureDefinition , and GET the resource metadata to see the full capability

statement, you will see next to the supportedProfiles parameter all the details on the profile you uploaded.

For example, if you POST a US Core Patient profile, which starts like this:

And send a GET request for your metadata :

GET http://<your FHIR service base URL>/metadata

...
{
 "type": "Patient",
 "profile": "http://hl7.org/fhir/StructureDefinition/Patient",
 "supportedProfile":[
 "http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient"
],
...

 Validating resources against the profiles

 Using $validate

 Validating an existing resource

GET http://<your FHIR service base URL>/{resource}/{resource ID}/$validate

GET http://my-fhir-server.azurewebsites.net/Patient/a6e11662-def8-4dde-9ebc-4429e68d130e/$validate

You will be returned with a CapabilityStatement that includes the following information on the US Core Patient

profile you uploaded to your FHIR server :

FHIR resources, such as Patient or Observation , can express their conformance to specific profiles. This allows

our FHIR server to validate given resources against the associated profiles or the specified profiles. Validating a

resource against profiles means checking if your resource conforms to the profiles, including the specifications

listed in Resource.meta.profile or in an Implementation Guide.

There are two ways for you to validate your resource. First, you can use $validate operation against a resource

that is already in the FHIR server. Second, you can POST it to the server as part of a resource Update or Create

operation. In both cases, you can decide via your FHIR server configuration what to do when the resource does

not conform to your desired profile.

The $validate operation checks whether the provided profile is valid, and whether the resource conforms to

the specified profile. As mentioned in the HL7 FHIR specifications, you can also specify the mode for $validate ,

such as create and update :

create : The server checks that the profile content is unique from the existing resources and that it is

acceptable to be created as a new resource

update : checks that the profile is an update against the nominated existing resource (e.g. that no changes are

made to the immutable fields)

The server will always return an OperationOutcome as the validation results.

To validate an existing resource, use $validate in a GET request:

For example:

In the example above, you would be validating the existing Patient resource

a6e11662-def8-4dde-9ebc-4429e68d130e . If it is valid, you will get an OperationOutcome such as the following:

https://www.hl7.org/fhir/resource-operation-validate.html

{
 "resourceType": "OperationOutcome",
 "issue": [
 {
 "severity": "information",
 "code": "informational",
 "diagnostics": "All OK"
 }
]
}

{
 "resourceType": "OperationOutcome",
 "issue": [
 {
 "severity": "error",
 "code": "invalid",
 "details": {
 "coding": [
 {
 "system": "http://hl7.org/fhir/dotnet-api-operation-outcome",
 "code": "1028"
 }
],
 "text": "Instance count for 'Patient.identifier.value' is 0, which is not within the
specified cardinality of 1..1"
 },
 "location": [
 "Patient.identifier[1]"
]
 },
 {
 "severity": "error",
 "code": "invalid",
 "details": {
 "coding": [
 {
 "system": "http://hl7.org/fhir/dotnet-api-operation-outcome",
 "code": "1028"
 }
],
 "text": "Instance count for 'Patient.gender' is 0, which is not within the specified
cardinality of 1..1"
 },
 "location": [
 "Patient"
]
 }
]
}

If the resource is not valid, you will get an error code and an error message with details on why the resource is

invalid. A 4xx or 5xx error means that the validation itself could not be performed, and it is unknown whether

the resource is valid or not. An example OperationOutcome returned with error messages could look like the

following:

In this example above, the resource did not conform to the provided Patient profile which required a patient

identifier value and gender.

If you would like to specify a profile as a parameter, you can specify the canonical URL for the profile to validate

against, such as the following example with US Core Patient profile and a base profile for heartrate :

GET http://<your FHIR service base URL>/{Resource}/{Resource ID}/$validate?profile={canonicalUrl}

GET http://my-fhir-server.azurewebsites.net/Patient/a6e11662-def8-4dde-9ebc-4429e68d130e/$validate?
profile=http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient
GET http://my-fhir-server.azurewebsites.net/Observation/12345678/$validate?
profile=http://hl7.org/fhir/StructureDefinition/heartrate

 Validating a new resource

POST http://<your FHIR service base URL>/{Resource}/$validate

POST http://my-fhir-server.azurewebsites.net/Patient/$validate

 Validate on resource CREATE or resource UPDATE

{
 "FhirServer": {
 "CoreFeatures": {
 "ProfileValidationOnCreate": true,
 "ProfileValidationOnUpdate": false
 }
}

x-ms-profile-validation: true

 Next steps

For example:

If you would like to validate a new resource that you are uploading to the server, you can do a POST request:

For example:

This request will create the new resource you are specifying in the request payload, whether it is in a JSON or

XML format, and validate the uploaded resource. Then, it will return an OperationOutcome as a result of the

validation on the new resource.

You can choose when you would like to validate your resource, such as on resource CREATE or UPDATE. You can

specify this in the server configuration setting, under the CoreFeatures :

If the resource conforms to the provided Resource.meta.profile and the profile is present in the system, the

server will act accordingly to the configuration setting above. If the provided profile is not present in the server,

the validation request will be ignored and left in Resource.meta.profile . Validation is usually an expensive

operation, so it is usually run only on test servers or on a small subset of resources - which is why it is

important to have these ways to turn the validation operation on or off validation on the server side. If the

server configuration specifies to opt out of validation on resource Create/Update, user can override the behavior

by specifying it in the header of the Create/Update request:

In this article, you have learned about FHIR profiles, and how to validate resources against profiles using

$validate. To learn about Azure API for FHIR's other supported features, check out:

FHIR supported features

How to export FHIR data
 5/25/2021 • 6 minutes to read • Edit Online

 Using $export command

NOTE

 Exporting FHIR data to ADLS Gen2

The Bulk Export feature allows data to be exported from the FHIR Server per the FHIR specification.

Before using $export, you'll want to make sure that the Azure API for FHIR is configured to use it. For

configuring export settings and creating Azure storage account, refer to the configure export data page.

After configuring the Azure API for FHIR for export, you can use the $export command to export the data out of

the service. The data will be stored into the storage account you specified while configuring export. To learn how

to invoke $export command in FHIR server, read documentation on the HL7 FHIR $export specification.

Jobs stuck in a bad state

In some situations, there is a potential for a job to be stuck in a bad state. This can occur especially if the storage

account permissions have not been setup properly. One way to validate if your export is successful is to check

your storage account to see if the corresponding container (that is, ndjson) files are present. If they are not

present, and there are no other export jobs running, then there is a possibility the current job is stuck in a bad

state. You should cancel the export job by sending a cancellation request and try re-queuing the job again. Our

default run time for an export in bad state is 10 minutes before it will stop and move to a new job or retry the

export.

The Azure API For FHIR supports $export at the following levels:

System: GET https://<<FHIR service base URL>>/$export>>

Patient: GET https://<<FHIR service base URL>>/Patient/$export>>

Group of patients* - Azure API for FHIR exports all related resources but doesn't export the characteristics of

the group: GET https://<<FHIR service base URL>>/Group/[ID]/$export>>

When data is exported, a separate file is created for each resource type. To ensure that the exported files don't

become too large. We create a new file after the size of a single exported file becomes larger than 64 MB. The

result is that you may get multiple files for each resource type, which will be enumerated (that is, Patient-

1.ndjson, Patient-2.ndjson).

Patient/$export and Group/[ID]/$export may export duplicate resources if the resource is in a compartment of

more than one resource, or is in multiple groups.

In addition, checking the export status through the URL returned by the location header during the queuing is

supported along with canceling the actual export job.

Currently we support $export for ADLS Gen2 enabled storage accounts, with the following limitation:

User cannot take advantage of hierarchical namespaces, yet there isn't a way to target export to a specific

subdirectory within the container. We only provide the ability to target a specific container (where we create

a new folder for each export).

Once an export is complete, we never export anything to that folder again, since subsequent exports to the

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/export-data.md
https://hl7.org/fhir/uv/bulkdata/export/index.html
https://hl7.org/Fhir/uv/bulkdata/export/index.html
https://hl7.org/Fhir/uv/bulkdata/export/index.html#endpoint---system-level-export
https://hl7.org/Fhir/uv/bulkdata/export/index.html#endpoint---all-patients
https://hl7.org/Fhir/uv/bulkdata/export/index.html#endpoint---group-of-patients
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-namespace

 Settings and parameters
 Headers

 Query parameters

Q UERY PA RA M ET ER DEF IN ED B Y T H E F H IR SP EC ? DESC RIP T IO N

_outputFormat Yes Currently supports three values to
align to the FHIR Spec:
application/fhir+ndjson,
application/ndjson, or just ndjson. All
export jobs will return ndjson and

the passed value has no effect on code
behavior.

_since Yes Allows you to only export resources
that have been modified since the time
provided

_type Yes Allows you to specify which types of
resources will be included. For example,
_type=Patient would return only
patient resources

_typefilter Yes To request finer-grained filtering, you
can use _typefilter along with the _type
parameter. The value of the _typeFilter
parameter is a comma-separated list of
FHIR queries that further restrict the
results

_container No Specifies the container within the
configured storage account where the
data should be exported. If a container
is specified, the data will be exported
into a folder into that container. If the
container is not specified, the data will
be exported to a new container.

NOTE

 Secure Export to Azure Storage

same container will be inside a newly created folder.

There are two required header parameters that must be set for $export jobs. The values are defined by the

current $export specification.

Accept - application/fhir+json

Prefer - respond-async

The Azure API for FHIR supports the following query parameters. All of these parameters are optional:

Only storage accounts in the same subscription as that for Azure API for FHIR are allowed to be registered as the

destination for $export operations.

Azure API for FHIR supports a secure export operation. Choose one of the two options below:

https://hl7.org/Fhir/uv/bulkdata/export/index.html#headers

 Allowing Azure API for FHIR as a Microsoft Trusted Service

IMPORTANT

Allowing Azure API for FHIR as a Microsoft Trusted Service to access the Azure storage account.

Allowing specific IP addresses associated with Azure API for FHIR to access the Azure storage account.

This option provides two different configurations depending on whether the storage account is in the

same location as, or is in a different location from that of the Azure API for FHIR.

Select a storage account from the Azure portal, and then select the Networking blade. Select Selected

networks under the Firewalls and vir tual networks tab.

Ensure that you’ve granted access permission to the storage account for Azure API for FHIR using its managed identity.

For more details, see Configure export setting and set up the storage account.

Under the Exceptions section, select the box Allow trusted Microsoft ser vices to access this storage

account and save the setting.

You're now ready to export FHIR data to the storage account securely. Note that the storage account is on

selected networks and is not publicly accessible. To access the files, you can either enable and use private

https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/configure-export-data
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/export-data/storage-networking.png#lightbox

IMPORTANT

 Allowing specific IP addresses for the Azure storage account in a different region

A Z URE REGIO N P UB L IC IP A DDRESS

Australia East 20.53.44.80

Canada Central 20.48.192.84

Central US 52.182.208.31

East US 20.62.128.148

East US 2 20.49.102.228

East US 2 EUAP 20.39.26.254

Germany North 51.116.51.33

Germany West Central 51.116.146.216

Japan East 20.191.160.26

Korea Central 20.41.69.51

North Central US 20.49.114.188

North Europe 52.146.131.52

South Africa North 102.133.220.197

South Central US 13.73.254.220

Southeast Asia 23.98.108.42

Switzerland North 51.107.60.95

UK South 51.104.30.170

UK West 51.137.164.94

West Central US 52.150.156.44

endpoints for the storage account, or enable all networks for the storage account for a short period of time.

The user interface will be updated later to allow you to select the Resource type for Azure API for FHIR and a specific

service instance.

Select Networking of the Azure storage account from the portal.

Select Selected networks . Under the Firewall section, specify the IP address in the Address range box. Add IP

ranges to allow access from the internet or your on-premises networks. You can find the IP address in the table

below for the Azure region where the Azure API for FHIR service is provisioned.

West Europe 20.61.98.66

West US 2 40.64.135.77

A Z URE REGIO N P UB L IC IP A DDRESS

NOTE

 Allowing specific IP addresses for the Azure storage account in the same region

NOTE

 Next steps

The above steps are similar to the configuration steps described in the document How to convert data to FHIR (Preview).

For more information, see Host and use templates

The configuration process is the same as above except a specific IP address range in CIDR format is used

instead, 100.64.0.0/10. The reason why the IP address range, which includes 100.64.0.0 – 100.127.255.255, must

be specified is because the actual IP address used by the service varies, but will be within the range, for each

$export request.

It is possible that a private IP address within the range of 10.0.2.0/24 may be used instead. In that case, the $export

operation will not succeed. You can retry the $export request, but there is no guarantee that an IP address within the

range of 100.64.0.0/10 will be used next time. That's the known networking behavior by design. The alternative is to

configure the storage account in a different region.

In this article, you've learned how to export FHIR resources using $export command. Next, to learn how to

export de-identified data, see:

Export de-identified data

https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/convert-data#host-and-use-templates

Exporting de-identified data (preview)
 6/8/2021 • 2 minutes to read • Edit Online

NOTE

NOTE

Q UERY PA RA M ET ER EXA M P L E O P T IO N A L IT Y DESC RIP T IO N

_anonymizationConfig DemoConfig.json Required for de-identified
export

Name of the configuration
file. See the configuration
file format here. This file
should be kept inside a
container named
anonymization within the
same Azure storage
account that is configured
as the export location.

_anonymizationConfigEtag "0x8D8494A069489EC" Optional for de-identified
export

This is the Etag of the
configuration file. You can
get the Etag using Azure
Storage Explorer from the
blob property

IMPORTANT

Results when using the de-identified export will vary based on factors such as data inputted, and functions selected by

the customer. Microsoft is unable to evaluate the de-identified export outputs or determine the acceptability for

customer's use cases and compliance needs. The de-identified export is not guaranteed to meet any specific legal,

regulatory, or compliance requirements.

The $export command can also be used to export de-identified data from the FHIR server. It uses the

anonymization engine from FHIR tools for anonymization, and takes anonymization config details in query

parameters. You can create your own anonymization config file or use the sample config file for HIPAA Safe

Harbor method as a starting point.

https://<<FHIR service base URL>>/$export?_container=<<container_name>>&_anonymizationConfig=<<config file
name>>&_anonymizationConfigEtag=<<ETag on storage>>

Right now the Azure API for FHIR only supports de-identified export at the system level ($export).

Both raw export as well as de-identified export writes to the same Azure storage account specified as part of export

configuration. It is recommended that you use different containers corresponding to different de-identified config and

manage user access at the container level.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/de-identified-export.md
https://github.com/microsoft/FHIR-Tools-for-Anonymization
https://github.com/microsoft/FHIR-Tools-for-Anonymization#sample-configuration-file-for-hipaa-safe-harbor-method
https://github.com/microsoft/FHIR-Tools-for-Anonymization#configuration-file-format

Moving data from Azure API for FHIR to Azure
Synapse Analytics

 5/25/2021 • 9 minutes to read • Edit Online

 Load exported data to Synapse using T-SQL
 $export for moving FHIR data into Azure Data Lake Gen 2 storage

 Configure your FHIR server to support $export

 Using $export command

In this article you will learn a couple of ways to move data from Azure API for FHIR to Azure Synapse Analytics,

which is a limitless analytics service that brings together data integration, enterprise data warehousing, and big

data analytics.

Moving data from the FHIR server to Synapse involves exporting the data using the FHIR $export operation

followed by a series of steps to transform and load the data to Synapse. This article will walk you through two of

the several approaches, both of which will show how to convert FHIR resources into tabular formats while

moving them into Synapse.

Load expor ted data to Synapse using T-SQL: Use $export operation to move FHIR resources into a

Azure Data Lake Gen 2 (ADL Gen 2) blob storage in NDJSON format. Load the data from the storage

into ser ver less or dedicated SQL pools in Synapse using T-SQL. Convert these steps into a robust data

movement pipeline using Synapse pipelines.

Use the tools from the FHIR Analytics Pipelines OSS repo: The FHIR Analytics Pipeline repo contains

tools that can create an Azure Data Factor y (ADF) pipeline to move FHIR data into a Common Data

Model (CDM) folder , and from the CDM folder to Synapse.

Azure API for FHIR implements the $export operation defined by the FHIR specification to export all or a

filtered subset of FHIR data in NDJSON format. In addition, it supports de-identified export to anonymize FHIR

data during the export. If you use $export , you get de-identification feature by default its capability is already

integrated in $export .

To export FHIR data to Azure blob storage, you first need to configure your FHIR server to export data to the

storage account. You will need to (1) enable Managed Identity, (2) go to Access Control in the storage account

and add role assignment, (3) select your storage account for $export . More step-by-step can be found here.

You can configure the server to export the data to any kind of Azure storage account, but we recommend

exporting to ADL Gen 2 for best alignment with Synapse.

After configuring your FHIR server, you can follow the documentation to export your FHIR resources at System,

Patient, or Group level. For example, you can export all of your FHIR data related to the patients in a Group with

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/move-to-synapse.md
https://azure.microsoft.com/services/synapse-analytics/
https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-pipelines
https://github.com/microsoft/FHIR-Analytics-Pipelines

https://{{FHIR service base URL}}/Group/{{GroupId}}/$export?_container={{BlobContainer}}

https://{{FHIR service base URL}}/Group/{{GroupId}}/$export?_container={{BlobContainer}}&
_type=Patient,MedicationRequest,Condition

 Create a Synapse workspace

 Creating a linked service between Azure storage and Synapse

 Decide between serverless and dedicated SQL pool

 Using serverless SQL pool

the following $export command, in which you specify your ADL Gen 2 blob storage name in the field

{{BlobContainer}} :

You can also use _type parameter in the $export call above to restrict the resources we you want to export.

For example, the following call will export only Patient , MedicationRequest , and Observation resources:

For more information on the different parameters supported, check out our $export page section on the query

parameters.

Before using Synapse, you will need a Synapse workspace. You will create a Azure Synapse Analytics service on

Azure portal. More step-by-step guide can be found here. You need an ADLSGEN2 account to create a workspace.

Your Azure Synapse workspace will use this storage account to store your Synapse workspace data.

After creating a workspace, you can view your workspace on Synapse Studio by signing into your workspace on

https://web.azuresynapse.net, or launching Synapse Studio in the Azure portal.

To move your data to Synapse, you need to create a linked service that connects your Azure Storage account

with Synapse. More step-by-step can be found here.

1. On Synapse Studio, navigate to the Manage tab, and under External connections , select L inked ser vices .

2. Select New to add a new linked service.

3. Select Azure Data Lake Storage Gen2 from the list and select Continue.

4. Enter your authentication credentials. Select Create when finished.

Now that you have a linked service between your ADL Gen 2 storage and Synapse, you are ready to use

Synapse SQL pools to load and analyze your FHIR data.

Azure Synapse Analytics offers two different SQL pools, serverless SQL pool and dedicated SQL pool. Serverless

SQL pool gives the flexibility of querying data directly in the blob storage using the serverless SQL endpoint

without any resource provisioning. Dedicated SQL pool has the processing power for high performance and

concurrency, and is recommended for enterprise-scale data warehousing capabilities. For more details on the

two SQL pools, check out the Synapse documentation page on SQL architecture.

Since it is serverless, there's no infrastructure to setup or clusters to maintain. You can start querying data from

Synapse Studio as soon as the workspace is created.

For example, the following query can be used to transform selected fields from Patient.ndjson into a tabular

structure:

https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace
https://web.azuresynapse.net
https://docs.microsoft.com/en-us/azure/synapse-analytics/data-integration/data-integration-sql-pool
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/overview-architecture

SELECT * FROM
OPENROWSET(bulk 'https://{{youraccount}}.blob.core.windows.net/{{yourcontainer}}/Patient.ndjson',
FORMAT = 'csv',
FIELDTERMINATOR ='0x0b',
FIELDQUOTE = '0x0b')
WITH (doc NVARCHAR(MAX)) AS rows
CROSS APPLY OPENJSON(doc)
WITH (
 ResourceId VARCHAR(64) '$.id',
 Active VARCHAR(10) '$.active',
 FullName VARCHAR(100) '$.name[0].text',
 Gender VARCHAR(20) '$.gender',
 ...
)

-- Create External data source where the parquet file will be written
CREATE EXTERNAL DATA SOURCE [MyDataSource] WITH (
 LOCATION = 'https://{{youraccount}}.blob.core.windows.net/{{exttblcontainer}}'
);
GO

-- Create External File Format
CREATE EXTERNAL FILE FORMAT [ParquetFF] WITH (
 FORMAT_TYPE = PARQUET,
 DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'
);
GO

CREATE EXTERNAL TABLE [dbo].[Patient] WITH (
 LOCATION = 'PatientParquet/',
 DATA_SOURCE = [MyDataSource],
 FILE_FORMAT = [ParquetFF]
) AS
SELECT * FROM
OPENROWSET(bulk 'https://{{youraccount}}.blob.core.windows.net/{{yourcontainer}}/Patient.ndjson'
-- Use rest of the SQL statement from the previous example --

 Using dedicated SQL pool

In the query above, the OPENROWSET function accesses files in Azure Storage, and OPENJSON parses JSON text and

returns the JSON input properties as rows and columns. Every time this query is executed, the serverless SQL

pool reads the file from the blob storage, parses the JSON, and extracts the fields.

You can also materialize the results in Parquet format in an External Table to get better query performance, as

shown below:

Dedicated SQL pool supports managed tables and a hierarchical cache for in-memory performance. You can

import big data with simple T-SQL queries, and then use the power of the distributed query engine to run high-

performance analytics.

The simplest and fastest way to load data from your storage to a dedicated SQL pool is to use the COPY

command in T-SQL, which can read CSV, Parquet, and ORC files. As in the example query below, use the COPY

command to load the NDJSON rows into a tabular structure.

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-external-tables

-- Create table with HEAP, which is not indexed and does not have a column width limitation of
NVARCHAR(4000)
CREATE TABLE StagingPatient (
Resource NVARCHAR(MAX)
) WITH (HEAP)
COPY INTO StagingPatient
FROM 'https://{{yourblobaccount}}.blob.core.windows.net/{{yourcontainer}}/Patient.ndjson'
WITH (
FILE_TYPE = 'CSV',
ROWTERMINATOR='0x0a',
FIELDQUOTE = '',
FIELDTERMINATOR = '0x00'
)
GO

SELECT RES.*
INTO Patient
FROM StagingPatient
CROSS APPLY OPENJSON(Resource)
WITH (
 ResourceId VARCHAR(64) '$.id',
 FullName VARCHAR(100) '$.name[0].text',
 FamilyName VARCHAR(50) '$.name[0].family',
 GivenName VARCHAR(50) '$.name[0].given[0]',
 Gender VARCHAR(20) '$.gender',
 DOB DATETIME2 '$.birthDate',
 MaritalStatus VARCHAR(20) '$.maritalStatus.coding[0].display',
 LanguageOfCommunication VARCHAR(20) '$.communication[0].language.text'
) AS RES
GO

 Use FHIR Analytics Pipelines OSS tools

NOTE

 ADF pipeline for moving FHIR data into CDM folder

Once you have the JSON rows in the StagingPatient table above, you can create different tabular formats of

the data using the OPENJSON function and storing the results into tables. Here is a sample SQL query to create a

Patient table by extracting a few fields from the Patient resource:

FHIR Analytics pipeline is an open source tool released under MIT license, and is not covered by the Microsoft SLA for

Azure services.

https://github.com/microsoft/FHIR-Analytics-Pipelines

 Generating table configuration

Configuration-Generator> node .\generate_from_yaml.js -r {resource configuration file} -p {properties group
file} -o {output folder}

 Generating ADF pipeline

 From CDM folder to Synapse

Common Data Model (CDM) folder is a folder in a data lake that conforms to well-defined and standardized

metadata structures and self-describing data. These folders facilitate metadata interoperability between data

producers and data consumers. Before you move FHIR data into CDM folder, you can transform your data into a

table configuration.

Clone te repo get all the scripts and source code. Use npm install to install the dependencies. Run the following

command from the Configuration-Generator folder to generate a table configuration folder using YAML format

instructions:

You may use the sample YAML files, resourcesConfig.yml and propertiesGroupConfig.yml provided in the repo.

Now you can use the content of the generated table configuration and a few other configurations to generate an

ADF pipeline. This ADF pipeline, when triggered, exports the data from the FHIR server using $export API and

writes to a CDM folder along with associated CDM metadata.

1. Create an Azure Active Directory (AD) application and service principal. The ADF pipeline uses an Azure batch

service to do the transformation, and needs an Azure AD application for the batch service. Follow Azure AD

documentation.

2. Grant access for export storage location to the service principal. In the Access Control of the export storage,

grant Storage Blob Data Contributor role to the Azure AD application.

3. Deploy the egress pipeline. Use the template fhirServiceToCdm.json for a custom deployment on Azure. This

step will create the following Azure resources:

4. Grant access to the Azure Data Factory. In the access control panel of your FHIR service, grant

FHIR data exporter and FHIR data reader roles to the data factory, {pipelinename}-df .

5. Upload the content of the table configuration folder to the configuration container.

6. Go to {pipelinename}-df , and trigger the pipeline. You should see the exported data in the CDM folder on the

storage account {pipelinename}storage . You should see one folder for each table having a CSV file.

An ADF pipeline with the name {pipelinename}-df .

A key vault with the name {pipelinename}-kv to store the client secret.

A batch account with the name {pipelinename}batch to run the transformation.

A storage account with the name {pipelinename}storage .

Once you have the data exported in a CDM format and stored in your ADL Gen 2 storage, you can now move

your data in the CDM folder to Synapse.

You can create CDM to Synapse pipeline using a configuration file, which would look something like this:

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

{
 "ResourceGroup": "",
 "TemplateFilePath": "../Templates/cdmToSynapse.json",
 "TemplateParameters": {
 "DataFactoryName": "",
 "SynapseWorkspace": "",
 "DedicatedSqlPool": "",
 "AdlsAccountForCdm": "",
 "CdmRootLocation": "cdm",
 "StagingContainer": "adfstaging",
 "Entities": ["LocalPatient", "LocalPatientAddress"]
 }
}

.\DeployCdmToSynapsePipeline.ps1 -Config: config.json

CREATE USER [datafactory-name] FROM EXTERNAL PROVIDER
GO
EXEC sp_addrolemember db_owner, [datafactory-name]
GO

 Next steps

Run this script with the configuration file above:

Add ADF Managed Identity as a SQL user into SQL database. Here is a sample SQL script to create a user and an

assign role:

In this article, you learned two different ways to move your FHIR data into Synapse: (1) using $export to move

data into ADL Gen 2 blob storage then loading the data into Synapse SQL pools, and (2) using ADF pipeline for

moving FHIR data into CDM folder then into Synapse.

Next, you can learn about anonymization of your FHIR data while moving data to Synapse to ensure your

healthcare information is protected:

Exporting de-identified data

How to convert data to FHIR (Preview)
 5/17/2021 • 4 minutes to read • Edit Online

IMPORTANT

 Use the $convert-data endpoint

PA RA M ET ER N A M E DESC RIP T IO N A C C EP T ED VA L UES

inputData Data to be converted. A valid value of JSON String datatype

inputDataType Data type of input. HL7v2

templateCollectionReference Reference to a template collection. It
can be a reference either to the
Default templates , or a custom
template image that's registered with
Azure API for FHIR. See below to learn
about customizing the templates,
hosting those on ACR, and registering
to the Azure API for FHIR.

microsofthealth/fhirconverter:default

,
<RegistryServer>/<imageName>@<i
mageDigest>

rootTemplate The root template to use while
transforming the data.

ADT_A01 , OML_O21 , ORU_R01 ,

VXU_V04

WARNING

This capability is in public preview, and it's provided without a service level agreement. It's not recommended for

production workloads. Certain features might not be supported or might have constrained capabilities. For more

information, see Supplemental Terms of Use for Microsoft Azure Previews.

The $convert-data custom endpoint in the Azure API for FHIR is meant for data conversion from different

formats to FHIR. It uses the Liquid template engine and the templates from the FHIR Converter project as the

default templates. You can customize these conversion templates as needed. Currently it supports HL7v2 to

FHIR conversion.

https://<<FHIR service base URL>>/$convert-data

$convert-data takes a Parameter resource in the request body as described below:

Parameter Resource:

Default templates help you get started quickly. However, these may get updated when we upgrade the Azure API for

FHIR. In order to have consistent data conversion behavior across different versions of Azure API for FHIR, you must host

your own copy of templates on an Azure Container Registry, register those to the Azure API for FHIR, and use in your API

calls as described later.

Sample request:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/convert-data.md
https://azure.microsoft.com/support/legal/preview-supplemental-terms/
https://github.com/microsoft/FHIR-Converter
http://hl7.org/fhir/parameters.html

{
 "resourceType": "Parameters",
 "parameter": [
 {
 "name": "inputData",
 "valueString":
"MSH|^~\\&|SIMHOSP|SFAC|RAPP|RFAC|20200508131015||ADT^A01|517|T|2.3|||AL||44|ASCII\nEVN|A01|20200508131015||
|C005^Whittingham^Sylvia^^^Dr^^^DRNBR^PRSNL^^^ORGDR|\nPID|1|3735064194^^^SIMULATOR
MRN^MRN|3735064194^^^SIMULATOR
MRN^MRN~2021051528^^^NHSNBR^NHSNMBR||Kinmonth^Joanna^Chelsea^^Ms^^CURRENT||19870624000000|F|||89 Transaction
House^Handmaiden Street^Wembley^^FV75 4GJ^GBR^HOME||020 3614 5541^HOME|||||||||C^White -
Other^^^||||||||\nPD1|||FAMILY PRACTICE^^12345|\nPV1|1|I|OtherWard^MainRoom^Bed 183^Simulated
Hospital^^BED^Main
Building^4|28b|||C005^Whittingham^Sylvia^^^Dr^^^DRNBR^PRSNL^^^ORGDR|||CAR|||||||||16094728916771313876^^^^vi
sitid||||||||||||||||||||||ARRIVED|||20200508131015||"
 },
 {
 "name": "inputDataType",
 "valueString": "Hl7v2"
 },
 {
 "name": "templateCollectionReference",
 "valueString": "microsofthealth/fhirconverter:default"
 },
 {
 "name": "rootTemplate",
 "valueString": "ADT_A01"
 }
]
}

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [
 {
 "fullUrl": "urn:uuid:9d697ec3-48c3-3e17-db6a-29a1765e22c6",
 "resource": {
 "resourceType": "Patient",
 "id": "9d697ec3-48c3-3e17-db6a-29a1765e22c6",
 ...
 ...
 "request": {
 "method": "PUT",
 "url": "Location/50becdb5-ff56-56c6-40a1-6d554dca80f0"
 }
 }
]
}

 Customize templates

 Host and use templates

Sample response:

You can use the FHIR Converter extension for Visual Studio Code to customize the templates as per your needs.

The extension provides an interactive editing experience, and makes it easy to download Microsoft-published

templates and sample data. Refer to the documentation in the extension for more details.

It's strongly recommended that you host your own copy of templates on ACR. There're four steps involved in

hosting your own copy of templates and using those in the $convert-data operation:

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-health-fhir-converter

 Push templates to Azure Container Registry

 Enable Managed Identity on Azure API for FHIR

 Provide access of the ACR to Azure API for FHIR

1. Push the templates to your Azure Container Registry.

2. Enable Managed Identity on your Azure API for FHIR instance.

3. Provide access of the ACR to the Azure API for FHIR Managed Identity.

4. Register the ACR servers in the Azure API for FHIR.

5. Optionally configure ACR firewall for secure access.

After creating an ACR instance, you can use the FHIR Converter : Push Templates command in the FHIR

Converter extension to push the customized templates to the ACR. Alternatively, you can use the Template

Management CLI tool for this purpose.

Browse to your instance of Azure API for FHIR service in the Azure portal, and then select the Identity blade.

Change the status to On to enable managed identity in Azure API for FHIR.

1. Browse to the Access control (IAM) blade.

2. Select Add, and then select Add role assignment to open the Add role assignment page.

3. Assign the AcrPull role.

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-health-fhir-converter
https://github.com/microsoft/FHIR-Converter/blob/main/docs/TemplateManagementCLI.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#acrpull

 Register the ACR servers in Azure API for FHIR

 Registering the ACR server using Azure portal

 Registering the ACR server using CLI

az extension add -n healthcareapis

 R e g i s t e r a s i n g l e A C R se r v e r

az healthcareapis acr add --login-servers "fhiracr2021.azurecr.io" --resource-group fhir-test --resource-
name fhirtest2021

 R e g i s t e r m u l t i p l e A C R se r v e r s

For more information about assigning roles in the Azure portal, see Azure built-in roles.

You can register the ACR server using the Azure portal, or using CLI.

Browse to the Ar tifacts blade under Data transformation in your Azure API for FHIR instance. You will see the

list of currently registered ACR servers. Select Add, and then select your registry server from the drop-down

menu. You'll need to select Save for the registration to take effect. It may take a few minutes to apply the change

and restart your instance.

You can register up to 20 ACR servers in the Azure API for FHIR.

Install the Healthcare APIs CLI from Azure PowerShell if needed:

Register the acr servers to Azure API for FHIR following the examples below:

https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

az healthcareapis acr add --login-servers "fhiracr2021.azurecr.io fhiracr2020.azurecr.io" --resource-group
fhir-test --resource-name fhirtest2021

 Configure ACR firewall

A Z URE REGIO N P UB L IC IP A DDRESS

Australia East 20.53.44.80

Canada Central 20.48.192.84

Central US 52.182.208.31

East US 20.62.128.148

East US 2 20.49.102.228

East US 2 EUAP 20.39.26.254

Germany North 51.116.51.33

Germany West Central 51.116.146.216

Japan East 20.191.160.26

Korea Central 20.41.69.51

Select Networking of the Azure storage account from the portal.

Select Selected networks .

Under the Firewall section, specify the IP address in the Address range box. Add IP ranges to allow access

from the internet or your on-premises networks.

In the table below, you'll find the IP address for the Azure region where the Azure API for FHIR service is

provisioned.

North Central US 20.49.114.188

North Europe 52.146.131.52

South Africa North 102.133.220.197

South Central US 13.73.254.220

Southeast Asia 23.98.108.42

Switzerland North 51.107.60.95

UK South 51.104.30.170

UK West 51.137.164.94

West Central US 52.150.156.44

West Europe 20.61.98.66

West US 2 40.64.135.77

A Z URE REGIO N P UB L IC IP A DDRESS

NOTE

 Verify

The above steps are similar to the configuration steps described in the document How to export FHIR data. For more

information, see Secure Export to Azure Storage

Make a call to the $convert-data API specifying your template reference in the templateCollectionReference

parameter.

<RegistryServer>/<imageName>@<imageDigest>

https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/export-data#secure-export-to-azure-storage

Patient-everything in FHIR
 6/8/2021 • 2 minutes to read • Edit Online

 Use patient-everything

GET {FHIRURL}/Patient/{ID}/$everything

NOTE

 Patient-everything parameters

Q UERY PA RA M ET ER DESC RIP T IO N

_type Allows you to specify which types of resources will be
included in the response. For example, _type=Encounter
would return only Encounter resources associated with the

patient.

_since Will return only resources that have been modified since the
time provided.

start Specifying the start date will pull in resources where there
clinical date is after the specified start date. If no start date is
provided, all records prior to the end date are in scope.

end Specifying the end date will pull in resources where there
clinical date is before the specified end date. If no end date is
provided, all records after the start date are in scope.

The $patient-everything operation was created to provide a patient with access to their entire record or for a

provider or other user to perform a bulk data download. This operation is used to return all the information

related to one or more patients described in the resource or context on which this operation is invoked.

To call patient-everything, use the following command:

The Azure API for FHIR validates that it can find the patient matching the provided patient ID. If a result is found,

the response will be a bundle of type “searchset” with the following information:

Patient resource

Resources that are directly referenced by the Patient resource (except link)

Resources in the Patient's compartment

Device resources that reference the Patient resource. Note that this is limited to 100 devices. If the patient has

more than 100 devices linked to them, only 100 will be returned.

$patient-everything is available in the Open Source FHIR Server backed by Cosmos DB now and will be available in Azure

API for FHIR before July 1st. The capability statement for the FHIR Server is missing support for $patient-everything,

which is tracked here: Issue 1989.

The Azure API for FHIR supports the following query parameters. All of these parameters are optional:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/patient-everything.md
https://www.hl7.org/fhir/patient-operation-everything.html
https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/compartmentdefinition-patient.html
https://www.hl7.org/fhir/device.html
https://github.com/microsoft/fhir-server/issues/1989

NOTE

 Examples of $patient-everything

GET {FHIRURL}/Patient/{ID}/$everything?start=2010&end=2020

GET {FHIRURL}/Patient/{ID}/$everything_type=Observation,Encounter

GET {FHIRURL}/Patient/{ID}/$everything?_since=2021-05-27T05:00:00Z

 Next step

You must specify an ID for a specific patient. If you need all data for all patients, see $export.

Below are some additional examples of using the $patient-everything operation.

To use $patient-everything to query a patient’s “everything” between 2010 and 2020, use the following call:

To use $patient-everything to query a patient’s Observation and Encounter, use the following call:

To use $patient-everything to query a patient’s “everything” since 2021-05-27T05:00:00Z, use the following call:

If a Patient is found for each of these calls, you'll get back a 200 response with a Bundle of the corresponding

resources.

Now that you know how to use the patient-everything operation, you can learn about more search options on

the overview of search guide.

Overview of FHIR search

$member-match operation
 6/8/2021 • 2 minutes to read • Edit Online

 Overview of $member-match

NOTE

 Example of $member-match

$member-match is an operation that is defined as part of the Da Vinci Health Record Exchange (HRex). In this

guide, we'll walk through what $member-match is and how to use it.

The $member-match operation was created to help with the payer-to-payer data exchange, by allowing a new

payer to get a unique identifier for a patient from the patient’s previous payer. The $member-match operation

requires three pieces of information to be passed in the body of the request:

Patient demographics

The old coverage information

The new coverage information (not required based on our implementation)

After the data is passed in, the Azure API for FHIR validates that it can find a patient that exactly matches the

demographics passed in with the old coverage information passed in. If a result is found, the response will be a

bundle with the original patient data plus a new identifier added in from the old payer, and the old coverage

information.

The specification describes passing in and back the new coverage information. We've decided to omit that data to keep

the results smaller.

To use $member-match, use the following call:

POST {{fhirurl}}/Patient/$member-match

You'll need to include a parameters resource in the body that includes the patient, the old coverage, and the new

coverage. To see a JSON representation, see $member-match example request.

If a single match is found, you'll receive a 200 response with another identifier added:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/tutorial-member-match.md
http://hl7.org/fhir/us/davinci-hrex/2020Sep/OperationDefinition-member-match.html
http://hl7.org/fhir/us/davinci-hrex/2020Sep/Parameters-member-match-in.json.html

 Next steps

If the $member-match can't find a unique match, you'll receive a 422 response with an error code.

In this guide, you've learned about the $member-match operation. Next, you can learn about testing the Da Vinci

Payer Data Exchange IG in Touchstone, which requires the $member-match operation.

DaVinci PDex

Find identity object IDs for authentication
configuration

 3/11/2021 • 2 minutes to read • Edit Online

 Find user object ID

$(Get-AzureADUser -Filter "UserPrincipalName eq 'myuser@contoso.com'").ObjectId

az ad user show --id myuser@contoso.com --query objectId --out tsv

 Find service principal object ID

$(Get-AzureADServicePrincipal -Filter "AppId eq 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'").ObjectId

$(Get-AzureADServicePrincipal -Filter "DisplayName eq 'testapp'").ObjectId

az ad sp show --id XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX --query objectId --out tsv

 Find a security group object ID

$(Get-AzureADGroup -Filter "DisplayName eq 'mygroup'").ObjectId

In this article, you'll learn how to find identity object IDs needed when configuring the Azure API for FHIR to use

an external or secondary Active Directory tenant for data plane.

If you have a user with user name myuser@contoso.com , you can locate the users ObjectId using the following

PowerShell command:

or you can use the Azure CLI:

Suppose you have registered a service client app and you would like to allow this service client to access the

Azure API for FHIR, you can find the object ID for the client service principal with the following PowerShell

command:

where XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX is the service client application ID. Alternatively, you can use the

DisplayName of the service client:

If you are using the Azure CLI, you can use:

If you would like to locate the object ID of a security group, you can use the following PowerShell command:

Where mygroup is the name of the group you are interested in.

If you are using the Azure CLI, you can use:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/find-identity-object-ids.md

az ad group show --group "mygroup" --query objectId --out tsv

 Next steps
In this article, you've learned how to find identity object IDs needed to configure the Azure API for FHIR to use

an external or secondary Azure Active Directory tenant. Next read about how to use the object IDs to configure

local RBAC settings:

Configure local RBAC settings

Enable Diagnostic Logging in Azure API for FHIR
 3/26/2021 • 3 minutes to read • Edit Online

 View and Download FHIR Metrics Data

 Enable audit logs

In this article, you will learn how to enable diagnostic logging in Azure API for FHIR and be able to review some

sample queries for these logs. Access to diagnostic logs is essential for any healthcare service where compliance

with regulatory requirements (such as HIPAA) is a must. The feature in Azure API for FHIR that enables

diagnostic logs is the Diagnostic settings in the Azure portal.

You can view the metrics under Monitoring | Metrics from the portal. The metrics include Number of Requests,

Average Latency, Number of Errors, Data Size, RUs Used, Number of requests that exceeded capacity, and

Availability (in %). The screenshot below shows RUs used for a sample environment with very few activities in

the last 7 days. You can download the data in Json format.

1. To enable diagnostic logging in Azure API for FHIR, select your Azure API for FHIR service in the Azure

portal

2. Navigate to Diagnostic settings

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/enable-diagnostic-logging.md
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/diagnostic-settings
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/diagnostic-logging/fhir-metrics-rus-screen.png#lightbox

NOTE

3. Select + Add diagnostic setting

4. Enter a name for the setting

5. Select the method you want to use to access your diagnostic logs:

a. Archive to a storage account for auditing or manual inspection. The storage account you want to

use needs to be already created.

b. Stream to event hub for ingestion by a third-party service or custom analytic solution. You will need

to create an event hub namespace and event hub policy before you can configure this step.

c. Stream to the Log Analytics workspace in Azure Monitor. You will need to create your Logs

Analytics Workspace before you can select this option.

6. Select AuditLogs and/or AllMetr ics . The metrics include service name, availability, data size, total

latency, total requests, total errors and timestamp. You can find more detail on supported metrics.

7. Select Save

It might take up to 15 minutes for the first Logs to show in Log Analytics. Also, if Azure API for FHIR is moved from one

resource group or subscription to another, update the setting once the move is complete.

For more information on how to work with diagnostic logs, please refer to the Azure Resource Log

documentation

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/diagnostic-logging/diagnostic-settings-screen.png#lightbox
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/diagnostic-logging/fhir-diagnostic-setting.png#lightbox
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/platform-logs-overview

 Audit log details

F IEL D N A M E T Y P E N OT ES

CallerIdentity Dynamic A generic property bag containing
identity information

CallerIdentityIssuer String Issuer

CallerIdentityObjectId String Object_Id

CallerIPAddress String The caller’s IP address

CorrelationId String Correlation ID

FhirResourceType String The resource type for which the
operation was executed

LogCategory String The log category (we are currently
returning ‘AuditLogs’ LogCategory)

Location String The location of the server that
processed the request (e.g., South
Central US)

OperationDuration Int The time it took to complete this
request in seconds

OperationName String Describes the type of operation (e.g.
update, search-type)

RequestUri String The request URI

ResultType String The available values currently are
Star ted , Succeeded, or Failed

StatusCode Int The HTTP status code. (e.g., 200)

TimeGenerated DateTime Date and time of the event

Properties String Describes the properties of the
fhirResourceType

SourceSystem String Source System (always Azure in this
case)

TenantId String Tenant ID

Type String Type of log (always
MicrosoftHealthcareApisAuditLog in
this case)

_ResourceId String Details about the resource

At this time, the Azure API for FHIR service returns the following fields in the audit log:

 Sample queries

MicrosoftHealthcareApisAuditLogs
| limit 100

MicrosoftHealthcareApisAuditLogs
| summarize count() by FhirResourceType

MicrosoftHealthcareApisAuditLogs
| where ResultType == "Failed"

 Conclusion

 Next steps

Here are a few basic Application Insights queries you can use to explore your log data.

Run this query to see the 100 most recent logs:

Run this query to group operations by FHIR Resource Type:

Run this query to get all the failed results

Having access to diagnostic logs is essential for monitoring a service and providing compliance reports. Azure

API for FHIR allows you to do these actions through diagnostic logs.

FHIR is the registered trademark of HL7 and is used with the permission of HL7.

In this article, you learned how to enable Audit Logs for Azure API for FHIR. Next, learn about other additional

settings you can configure in the Azure API for FHIR

Additional Settings

Display and configure Azure IoT Connector for
FHIR (preview) metrics

 3/11/2021 • 2 minutes to read • Edit Online

TIP

 Display metrics for Azure IoT Connector for FHIR (preview)

In this article, you'll learn how to display and configure Azure IoT Connector for Fast Healthcare Interoperability

Resources (FHIR®)* metrics.

To learn how to set up the export of metrics data, follow the guidance in Export Azure IoT Connector for FHIR (preview)

metrics through diagnostics settings.

1. Sign in to the Azure portal, and then select your Azure API for FHIR service.

2. On the left pane, select Metr ics .

3. Select the IoT Connector tab.

4. Select an IoT Connector to view its metrics. For example, there are four IoT Connectors (connector 1,

connector 2, and so on) associated with this Azure API for FHIR service.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-metrics-display.md
https://docs.microsoft.com/en-us/azure/healthcare-apis/fhir/iot-metrics-diagnostics-export
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-main.png#lightbox

 Metric types for Azure IoT Connector for FHIR (preview)

TIP

5. Select the time period (for example, 1 hour , 24 hours , 7 days , or Custom) of the IoT Connector metrics

you want to display. By selecting the Custom tab, you can create specific time/date combinations for

displaying IoT Connector metrics.

To learn about data flow in Azure IoT Connector for FHIR, view Azure IoT Connector for FHIR (preview) data flow and

Azure IoT Connector for FHIR (preview) troubleshooting guide to learn more about error messages and fixes.

The IoT Connector metrics you can display are listed in the following table:

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-select-connector.png#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-select-time.png#lightbox

M ET RIC T Y P E M ET RIC P URP O SE

Number of Incoming Messages Displays the number of received raw incoming messages (for
example, the device events).

Number of Normalized Messages Displays the number of normalized messages.

Number of Message Groups Displays the number of groups that have messages
aggregated in the designated time window.

Average Normalized Stage Latency Displays the average latency of the normalized stage. The
normalized stage performs normalization on raw incoming
messages.

Average Group Stage Latency Displays the average latency of the group stage. The group
stage performs buffering, aggregating, and grouping on
normalized messages.

Total Error Count Displays the total number of errors.

 Focus on and configure Azure IoT Connector for FHIR (preview)
metrics
In this example, let's focus on the Number of Incoming Messages metric.

1. Select a point-in-time that you want to focus on.

2. On the Number of Incoming Messages pane, you can further customize the metric by selecting Add

metr ic , Add filter , or Apply splitting.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-focus.png#lightbox

 Conclusion

 Next steps

Having access to data plane metrics is essential for monitoring and troubleshooting. Azure IoT Connector for

FHIR assists you with these actions through metrics.

Get answers to frequently asked questions about Azure IoT Connector for FHIR.

Azure IoT Connector for FHIR FAQ

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-metrics-display/iot-metrics-add-options.png#lightbox

Get access token for Azure API for FHIR using
Azure CLI

 3/11/2021 • 2 minutes to read • Edit Online

 Prerequisites

 Obtain a token

token=$(az account get-access-token --resource=https://<FHIR ACCOUNT NAME>.azurehealthcareapis.com --query
accessToken --output tsv)

 Use with Azure API for FHIR

curl -X GET --header "Authorization: Bearer $token" https://<FHIR ACCOUNT
NAME>.azurehealthcareapis.com/Patient

 Next steps

In this article, you'll learn how to obtain an access token for the Azure API for FHIR using the Azure CLI. When

you provision the Azure API for FHIR, you configure a set of users or service principals that have access to the

service. If your user object ID is in the list of allowed object IDs, you can access the service using a token

obtained using the Azure CLI.

Use the Bash environment in Azure Cloud Shell.

If you prefer, install the Azure CLI to run CLI reference commands.

If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish

the authentication process, follow the steps displayed in your terminal. For additional sign-in

options, see Sign in with the Azure CLI.

When you're prompted, install Azure CLI extensions on first use. For more information about

extensions, see Use extensions with the Azure CLI.

Run az version to find the version and dependent libraries that are installed. To upgrade to the

latest version, run az upgrade.

The Azure API for FHIR uses a resource or Audience with URI equal to the URI of the FHIR server

https://<FHIR ACCOUNT NAME>.azurehealthcareapis.com . You can obtain a token and store it in a variable (named

$token) with the following command:

In this article, you've learned how to obtain an access token for the Azure API for FHIR using the Azure CLI. To

learn how to access the FHIR API using Postman, proceed to the Postman tutorial.

Access FHIR API using Postman

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/get-healthcare-apis-access-token-cli.md
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index#az_login
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/azure-cli-extensions-overview
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_version
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_upgrade

Azure IoT Connector for FHIR (preview)
troubleshooting guide

 3/11/2021 • 9 minutes to read • Edit Online

TIP

 Device and FHIR Conversion Mapping JSON Template Validations for
Azure IoT Connector for FHIR (preview)

EL EM EN T REQ UIRED

TypeName True

TypeMatchExpression True

DeviceIdExpression True

TimestampExpression True

Values[].ValueName True

Values[].ValueExpression True

NOTE

This article provides steps for troubleshooting common Azure IoT Connector for Fast Healthcare Interoperability

Resources (FHIR®)* error messages and conditions.

You'll also learn how to create copies of the Azure IoT Connector for FHIR conversion mappings JSON (for

example: Device and FHIR).

You can use the conversion mapping JSON copies for editing and archiving outside of the Azure portal.

If you'll be opening a Azure Technical Support ticket for the Azure IoT Connector for FHIR, make sure to include copies of

your conversion mapping JSON to help with the troubleshooting process.

In this section, you'll learn about the validation process that Azure IoT Connector for FHIR performs to validate

the Device and FHIR conversion mapping JSON templates before allowing them to be saved for use. These

elements are required in the Device and FHIR Conversion Mapping JSON.

Device Mapping

Values[].ValueName and Values[].ValueExpression

These elements are only required if you have a value entry in the array - it is valid to have no values mapped. This is used

when the telemetry being sent is an event. For example: When a wearable IoMT device is put on or removed. The

element(s) do not have any values except for a name that Azure IoT Connector for FHIR matches and emits. On the FHIR

conversion, Azure IoT Connector for FHIR maps it to a code-able concept based on the semantic type - no actual values

are populated.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-troubleshoot-guide.md
https://azure.microsoft.com/support/create-ticket/

EL EM EN T REQ UIRED

TypeName True

NOTE

 Error messages and fixes for Azure IoT Connector for FHIR (preview)

M ESSA GE DISP L AY ED C O N DIT IO N F IX

Invalid mapping name,
mapping name should be
device or FHIR.

API Mapping type supplied isn't
device or FHIR.

Use one of the two
supported mapping types
(for example: Device or
FHIR).

Validation failed. Required
information is missing or
not valid.

API and Azure portal Attempting to save a
conversion mapping
missing needed information
or element.

Add missing conversion
mapping information or
element and attempt to
save the conversion
mapping again.

Regenerate key parameters
not defined.

API Regenerate key request. Include the parameters in
the regeneration key
request.

Reached the maximum
number of IoT Connector
instances that can be
provisioned in this
subscription.

API and Azure portal Azure IoT Connector for
FHIR subscription quota
reached (Default is (2) per
subscription).

Delete one of the existing
instances of Azure IoT
Connector for FHIR. Use a
different subscription that
hasn't reached the
subscription quota. Request
a subscription quota
increase.

Move resource is not
supported for IoT
Connector enabled Azure
API for FHIR resource.

API and Azure portal Attempting to do a move
operation on an Azure API
for FHIR resource that has
one or more instances of
the Azure IoT Connector for
FHIR.

Delete existing instance(s)
of Azure IoT Connector for
FHIR to do the move
operation.

IoT Connector not
provisioned.

API Attempting to use child
services (connections &
mappings) when parent
(Azure IoT Connector for
FHIR) hasn't been
provisioned.

Provision an Azure IoT
Connector for FHIR.

The request is not
supported.

API Specific API request isn't
supported.

Use the correct API request.

FHIR Mapping

This is the only required FHIR Mapping element validated at this time.

Account does not exist. API Attempting to add an Azure
IoT Connector for FHIR and
the Azure API for FHIR
resource doesn't exist.

Create the Azure API for
FHIR resource and then
reattempt the operation.

Azure API for FHIR resource
FHIR version is not
supported for IoT
Connector.

API Attempting to use an Azure
IoT Connector for FHIR with
an incompatible version of
the Azure API for FHIR
resource.

Create a new Azure API for
FHIR resource (version R4)
or use an existing Azure API
for FHIR resource (version
R4).

M ESSA GE DISP L AY ED C O N DIT IO N F IX

 Why is my Azure IoT Connector for FHIR (preview) data not showing
up in Azure API for FHIR?

P OT EN T IA L ISSUES F IXES

Data is still being processed. Data is egressed to the Azure API for FHIR in batches (every
~15 minutes). It’s possible the data is still being processed
and additional time is needed for the data to be persisted in
the Azure API for FHIR.

Device conversion mapping JSON hasn't been configured. Configure and save conforming device conversion mapping
JSON.

FHIR conversion mapping JSON has not been configured. Configure and save conforming FHIR conversion mapping
JSON.

The device message doesn't contain an expected expression
defined in the device mapping.

Verify JsonPath expressions defined in the device mapping
match tokens defined in the device message.

A Device Resource hasn't been created in the Azure API for
FHIR (Resolution Type: Lookup only)*.

Create a valid Device Resource in the Azure API for FHIR. Be
sure the Device Resource contains an Identifier that matches
the device identifier provided in the incoming message.

A Patient Resource has not been created in the Azure API for
FHIR (Resolution Type: Lookup only)*.

Create a valid Patient Resource in the Azure API for FHIR.

The Device.patient reference isn't set, or the reference is
invalid (Resolution Type: Lookup only)*.

Make sure the Device Resource contains a valid Reference to
a Patient Resource.

 Use Metrics to troubleshoot issues in Azure IoT Connector for FHIR
(preview)

*Reference Quickstart: Deploy Azure IoT Connector (preview) using Azure portal for a functional description of

the Azure IoT Connector for FHIR resolution types (For example: Lookup or Create).

Azure IoT Connector for FHIR generates multiple metrics to provide insights into the data flow process. One of

the supported metrics is called Total Errors, which provides the count for all errors that occur within an instance

of Azure IoT Connector for FHIR.

Each error gets logged with a number of associated properties. Every property provides a different aspect about

the error, which could help you to identify and troubleshoot issues. This section lists different properties

captured for each error in the Total Errors metric, and possible values for these properties.

https://www.hl7.org/fhir/device-definitions.html#Device.patient

NOTE

 The operation performed by the Azure IoT Connector for FHIR (preview)

NOTE

DATA F LO W STA GE DESC RIP T IO N

Setup Operation specific to setting up your instance of IoT
Connector

Normalization Data flow stage where device data gets normalized

Grouping Data flow stage where normalized data gets grouped

FHIRConversion Data flow stage where grouped-normalized data is
transformed into a FHIR resource

Unknown The operation type is unknown when error occurred

 The severity of the error

SEVERIT Y DESC RIP T IO N

Warning Some minor issue exists in the data flow process, but
processing of the device message doesn't stop

Error Processing of a specific device message has run into an error
and other messages may continue to execute as expected

Critical Some system level issue exists with the IoT Connector and
no messages are expected to process

 The type of the error

ERRO R T Y P E DESC RIP T IO N

DeviceTemplateError Errors related to device mapping templates

You can navigate to the Total Errors metric for an instance of Azure IoT Connector for FHIR (preview) as described on the

Azure IoT Connector for FHIR (preview) Metrics page.

Click on the Total Errors graph and then click on Add filter button to slice and dice the error metric using any of

the properties mentioned below.

This property represents the operation being performed by IoT Connector when the error has occurred. An

operation generally represents the data flow stage while processing a device message. Here is the list of

possible values for this property.

You can read more about different stages of data flow in Azure IoT Connector for FHIR (preview) here.

This property represents the severity of the occurred error. Here is the list of possible values for this property.

This property signifies a category for a given error, which basically represents a logical grouping for similar type

of errors. Here is the list of possible value for this property.

DeviceMessageError Errors occurred when processing a specific device message

FHIRTemplateError Errors related to FHIR mapping templates

FHIRConversionError Errors occurred when transforming a message into a FHIR
resource

FHIRResourceError Errors related to existing resources in the FHIR server that
are referenced by IoT Connector

FHIRServerError Errors that occur when communicating with FHIR server

GeneralError All other types of errors

ERRO R T Y P E DESC RIP T IO N

 The name of the error

ERRO R N A M E DESC RIP T IO N ERRO R T Y P E(S) ERRO R SEVERIT Y DATA F LO W STA GE(S)

MultipleResourceFou
ndException

Error occurred when
multiple patient or
device resources are
found in the FHIR
server for respective
identifiers present in
the device message

FHIRResourceError Error FHIRConversion

TemplateNotFoundEx
ception

A device or FHIR
mapping template
isn't configured with
the instance of IoT
Connector

DeviceTemplateError,
FHIRTemplateError

Critical Normalization,
FHIRConversion

CorrelationIdNotDefi
nedException

Correlation ID isn't
specified in the
device mapping
template.
CorrelationIdNotDefi
nedException is a
conditional error that
would occur only
when FHIR
Observation must
group device
measurements using
a correlation ID but
it's not configured
correctly

DeviceMessageError Error Normalization

This property provides the name for a specific error. Here is the list of all error names with their description and

associated error type(s), severity, and data flow stage(s).

PatientDeviceMismat
chException

This error occurs
when the device
resource on the FHIR
server has a
reference to a patient
resource, which
doesn't match with
the patient identifier
present in the
message

FHIRResourceError Error FHIRConversionError

PatientNotFoundExce
ption

No Patient FHIR
resource is
referenced by the
Device FHIR resource
associated with the
device identifier
present in the device
message. Note this
error will only occur
when IoT Connector
instance is configured
with Lookup
resolution type

FHIRConversionError Error FHIRConversion

DeviceNotFoundExce
ption

No device resource
exists on the FHIR
Server associated
with the device
identifier present in
the device message

DeviceMessageError Error Normalization

PatientIdentityNotDe
finedException

This error occurs
when expression to
parse patient
identifier from the
device message isn't
configured on the
device mapping
template or patient
identifer isn't present
in the device
message. Note this
error occurs only
when IoT Connector's
resolution type is set
to Create

DeviceTemplateError Critical Normalization

DeviceIdentityNotDef
inedException

This error occurs
when expression to
parse device identifier
from the device
message isn't
configured on the
device mapping
template or device
identifer isn't present
in the device
message

DeviceTemplateError Critical Normalization

ERRO R N A M E DESC RIP T IO N ERRO R T Y P E(S) ERRO R SEVERIT Y DATA F LO W STA GE(S)

NotSupportedExcepti
on

Error occurred when
device message with
unsupported format
is received

DeviceMessageError Error Normalization

ERRO R N A M E DESC RIP T IO N ERRO R T Y P E(S) ERRO R SEVERIT Y DATA F LO W STA GE(S)

 Creating copies of the Azure IoT Connector for FHIR (preview)
conversion mapping JSON

NOTE

TIP

The copying of Azure IoT Connector for FHIR mapping files can be useful for editing and archiving outside of the

Azure portal website.

The mapping file copies should be provided to Azure Technical Support when opening a support ticket to assist

in troubleshooting.

JSON is the only supported format for Device and FHIR mapping files at this time.

Learn more about the Azure IoT Connector for FHIR Device and FHIR conversion mapping JSON

1. Select "IoT Connector (preview)" on the lower left side of the Azure API for FHIR resource dashboard

in the "Add-ins" section.

2. Select the "Connector" that you'll be copying the conversion mapping JSON from.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-main-with-box.png#lightbox

NOTE

TIP

 Next steps

This process may also be used for copying and saving the contents of the "Configure FHIR mapping" JSON.

3. Select "Configure device mapping".

4. Select the contents of the JSON and do a copy operation (for example: Select Ctrl + c).

5. Do a paste operation (for example: Select Ctrl + v) into a new file within an editor (for example: Visual

Studio Code, Notepad) and save the file with an *.json extension.

If you'll be opening a Azure Technical Support ticket for the Azure IoT Connector for FHIR, make sure to include copies of

your conversion mapping JSON to help with the troubleshooting process.

file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-select-connector-with-box.png#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-select-device-with-box.png#lightbox
file:///T:/ginl/b3lw/azure/healthcare-apis/fhir/media/iot-troubleshoot/map-files-select-device-json-with-box.png#lightbox
https://azure.microsoft.com/support/create-ticket/

Check out frequently asked questions about the Azure IoT Connector for FHIR.

Azure IoT Connector for FHIR FAQs

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Azure Active Directory identity configuration for
Azure API for FHIR

 3/11/2021 • 4 minutes to read • Edit Online

 Access control overview

 Structure of an access token

An important piece when working with healthcare data is to ensure that the data is secure and cannot be

accessed by unauthorized users or applications. FHIR servers use OAuth 2.0 to ensure this data security. The

Azure API for FHIR is secured using Azure Active Directory, which is an example of an OAuth 2.0 identity

provider. This article provides an overview of FHIR server authorization and the steps needed to obtain a token

to access a FHIR server. While these steps will apply to any FHIR server and any identity provider, we will walk

through Azure API for FHIR as the FHIR server and Azure AD as our identity provider in this article.

In order for a client application to access Azure API for FHIR, it must present an access token. The access token is

a signed, Base64 encoded collection of properties (claims) that convey information about the client's identity

and roles and privileges granted to the client.

There are a number of ways to obtain a token, but the Azure API for FHIR doesn't care how the token is obtained

as long as it's an appropriately signed token with the correct claims.

Using authorization code flow as an example, accessing a FHIR server goes through the four steps below:

1. The client sends a request to the /authorize endpoint of Azure AD. Azure AD will redirect the client to a sign-

in page where the user will authenticate using appropriate credentials (for example username and password

or two-factor authentication). See details on obtaining an authorization code. Upon successful authentication,

an authorization code is returned to the client. Azure AD will only allow this authorization code to be

returned to a registered reply URL configured in the client application registration (see below).

2. The client application exchanges the authorization code for an access token at the /token endpoint of Azure

AD. When requesting a token, the client application may have to provide a client secret (the applications

password). See details on obtaining an access token.

3. The client makes a request to the Azure API for FHIR, for example GET /Patient to search all patients. When

making the request, it includes the access token in an HTTP request header, for example

Authorization: Bearer eyJ0e... , where eyJ0e... represents the Base64 encoded access token.

4. The Azure API for FHIR validates that the token contains appropriate claims (properties in the token). If

everything checks out, it will complete the request and return a FHIR bundle with results to the client.

It is important to note that the Azure API for FHIR isn't involved in validating user credentials and it doesn't issue

the token. The authentication and token creation is done by Azure AD. The Azure API for FHIR simply validates

that the token is signed correctly (it is authentic) and that it has appropriate claims.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/azure-ad-hcapi.md
https://oauth.net/2/
https://azure.microsoft.com/services/azure-api-for-fhir/
https://docs.microsoft.com/en-us/azure/active-directory/index
https://en.wikipedia.org/wiki/Base64
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJvaWQiOiIxMjMiLCAiaXNzIjoiaHR0cHM6Ly9pc3N1ZXJ1cmwiLCJpYXQiOjE0MjI3Nzk
2MzgsInJvbGVzIjpbImFkbWluIl19.gzSraSYS8EXBxLN_oWnFSRgCzcmJmMjLiuyu5CSpyHI

{
 "alg": "HS256",
 "typ": "JWT"
}.{
 "oid": "123",
 "iss": "https://issuerurl",
 "iat": 1422779638,
 "roles": [
 "admin"
]
}.[Signature]

 Obtaining an access token

Development of FHIR applications often involves debugging access issues. If a client is denied access to the

Azure API for FHIR, it's useful to understand the structure of the access token and how it can be decoded to

inspect the contents (the claims) of the token.

FHIR servers typically expect a JSON Web Token (JWT, sometimes pronounced "jot"). It consists of three parts:

1. A header, which could look like:

{
 "alg": "HS256",
 "typ": "JWT"
}

2. The payload (the claims), for example:

{
 "oid": "123",
 "iss": "https://issuerurl",
 "iat": 1422779638,
 "roles": [
 "admin"
]
}

3. A signature, which is calculated by concatenating the Base64 encoded contents of the header and the

payload and calculating a cryptographic hash of them based on the algorithm (alg) specified in the header.

A server will be able to obtain public keys from the identity provider and validate that this token was issued

by a specific identity provider and it hasn't been tampered with.

The full token consists of the Base64 encoded (actually Base64 url encoded) versions of those three segments.

The three segments are concatenated and separated with a . (dot).

An example token is seen below:

The token can be decoded and inspected with tools such as https://jwt.ms. The result of decoding the token is:

As mentioned above, there are several ways to obtain a token from Azure AD. They are described in detail in the

Azure AD developer documentation.

Azure AD has two different versions of the OAuth 2.0 endpoints, which are referred to as v1.0 and v2.0 . Both

https://en.wikipedia.org/wiki/JSON_Web_Token
https://jwt.ms
https://docs.microsoft.com/en-us/azure/active-directory/develop/index

 Next steps

of these versions are OAuth 2.0 endpoints and the v1.0 and v2.0 designations refer to differences in how

Azure AD implements that standard.

When using a FHIR server, you can use either the v1.0 or the v2.0 endpoints. The choice may depend on the

authentication libraries you are using in your client application.

The pertinent sections of the Azure AD documentation are:

v1.0 endpoint:

v2.0 endpoint:

Authorization code flow.

Client credentials flow.

Authorization code flow.

Client credentials flow.

There are other variations (for example on behalf of flow) for obtaining a token. Check the Azure AD

documentation for details. When using the Azure API for FHIR, there are also some shortcuts for obtaining an

access token (for debugging purposes) using the Azure CLI.

In this document, you learned some of the basic concepts involved in securing access to the Azure API for FHIR

using Azure AD. To learn how to deploy an instance of the Azure API for FHIR, continue to the deployment

quickstart.

Deploy Azure API for FHIR

https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/v1-oauth2-client-creds-grant-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow

Azure API for FHIR access token validation
 3/11/2021 • 2 minutes to read • Edit Online

 Validate token has no issues with identity provider

GET https://login.microsoftonline.com/<TENANT-ID>/.well-known/openid-configuration

How Azure API for FHIR validates the access token will depend on implementation and configuration. In this

article, we will walk through the validation steps, which can be helpful when troubleshooting access issues.

The first step in the token validation is to verify that the token was issued by the correct identity provider and

that it hasn't been modified. The FHIR server will be configured to use a specific identity provider known as the

authority Authority . The FHIR server will retrieve information about the identity provider from the

/.well-known/openid-configuration endpoint. When using Azure AD, the full URL would be:

where <TENANT-ID> is the specific Azure AD tenant (either a tenant ID or a domain name).

Azure AD will return a document like the one below to the FHIR server.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/azure-ad-hcapi-token-validation.md

{
 "authorization_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/authorize",
 "token_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/token",
 "token_endpoint_auth_methods_supported": [
 "client_secret_post",
 "private_key_jwt",
 "client_secret_basic"
],
 "jwks_uri": "https://login.microsoftonline.com/common/discovery/keys",
 "response_modes_supported": [
 "query",
 "fragment",
 "form_post"
],
 "subject_types_supported": [
 "pairwise"
],
 "id_token_signing_alg_values_supported": [
 "RS256"
],
 "http_logout_supported": true,
 "frontchannel_logout_supported": true,
 "end_session_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/logout",
 "response_types_supported": [
 "code",
 "id_token",
 "code id_token",
 "token id_token",
 "token"
],
 "scopes_supported": [
 "openid"
],
 "issuer": "https://sts.windows.net/<TENANT-ID>/",
 "claims_supported": [
 "sub",
 "iss",
 "cloud_instance_name",
 "cloud_instance_host_name",
 "cloud_graph_host_name",
 "msgraph_host",
 "aud",
 "exp",
 "iat",
 "auth_time",
 "acr",
 "amr",
 "nonce",
 "email",
 "given_name",
 "family_name",
 "nickname"
],
 "microsoft_multi_refresh_token": true,
 "check_session_iframe": "https://login.microsoftonline.com/<TENANT-ID>/oauth2/checksession",
 "userinfo_endpoint": "https://login.microsoftonline.com/<TENANT-ID>/openid/userinfo",
 "tenant_region_scope": "WW",
 "cloud_instance_name": "microsoftonline.com",
 "cloud_graph_host_name": "graph.windows.net",
 "msgraph_host": "graph.microsoft.com",
 "rbac_url": "https://pas.windows.net"
}

The important properties for the FHIR server are jwks_uri , which tells the server where to fetch the encryption

keys needed to validate the token signature and issuer , which tells the server what will be in the issuer claim (

iss) of tokens issued by this server. The FHIR server can use this to validate that it is receiving an authentic

 Validate claims of the token

 Next steps

token.

Once the server has verified the authenticity of the token, the FHIR server will then proceed to validate that the

client has the required claims to access the token.

When using the Azure API for FHIR, the server will validate:

1. The token has the right Audience (aud claim).

2. The user or principal that the token was issued for is allowed to access the FHIR server data plane. The oid

claim of the token contains an identity object ID, which uniquely identifies the user or principal.

We recommend that the FHIR service be configured to use Azure RBAC to manage data plane role assignments.

But you can also configure local RBAC if your FHIR service uses an external or secondary Azure Active Directory

tenant.

When using the OSS Microsoft FHIR server for Azure, the server will validate:

1. The token has the right Audience (aud claim).

2. The token has a role in the roles claim, which is allowed access to the FHIR server.

Consult details on how to define roles on the FHIR server.

A FHIR server may also validate that an access token has the scopes (in token claim scp) to access the part of

the FHIR API that a client is trying to access. Currently, the Azure API for FHIR and the FHIR server for Azure do

not validate token scopes.

Now that you know how to walk through token validation, you can complete the tutorial to create a JavaScript

application and read FHIR data.

Web application tutorial

https://github.com/microsoft/fhir-server/blob/master/docs/Roles.md

Add data to audit logs by using custom HTTP
headers

 3/11/2021 • 2 minutes to read • Edit Online

IMPORTANT

In the Azure Fast Healthcare Interoperability Resources (FHIR) API, a user might want to include additional

information in the logs, which comes from the calling system.

For example, when the user of the API is authenticated by an external system, that system forwards the call to

the FHIR API. At the FHIR API layer, the information about the original user has been lost, because the call was

forwarded. It might be necessary to log and retain this user information for auditing or management purposes.

The calling system can provide user identity, caller location, or other necessary information in the HTTP headers,

which will be carried along as the call is forwarded.

You can see this data flow in the following diagram:

You can use custom headers to capture several types of information. For example:

Identity or authorization information

Origin of the caller

Originating organization

Client system details (electronic health record, patient portal)

Be aware that the information sent in custom headers is stored in a Microsoft internal logging system for 30 days after

being available in Azure Log Monitoring. We recommend encrypting any information before adding it to custom headers.

You should not pass any PHI information through customer headers.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/use-custom-headers.md

{ "X-MS-AZUREFHIR-AUDIT-USERID" : "1234",
"X-MS-AZUREFHIR-AUDIT-USERLOCATION" : "XXXX",
"X-MS-AZUREFHIR-AUDIT-XYZ" : "1234" }

FhirClient client;
client = new FhirClient(serverUrl);
client.OnBeforeRequest += (object sender, BeforeRequestEventArgs e) =>
{
 // Add custom headers to be added to the logs
 e.RawRequest.Headers.Add("X-MS-AZUREFHIR-AUDIT-UserLocation", "HospitalA");
};
client.Get("Patient");

 Next steps

You must use the following naming convention for your HTTP headers: X-MS-AZUREFHIR-AUDIT-<name>.

These HTTP headers are included in a property bag that is added to the log. For example:

X-MS-AZUREFHIR-AUDIT-USERID: 1234

X-MS-AZUREFHIR-AUDIT-USERLOCATION: XXXX

X-MS-AZUREFHIR-AUDIT-XYZ: 1234

This information is then serialized to JSON when it's added to the properties column in the log. For example:

As with any HTTP header, the same header name can be repeated with different values. For example:

X-MS-AZUREFHIR-AUDIT-USERLOCATION: HospitalA

X-MS-AZUREFHIR-AUDIT-USERLOCATION: Emergency

When added to the log, the values are combined with a comma delimited list. For example:

{ "X-MS-AZUREFHIR-AUDIT-USERLOCATION" : "HospitalA, Emergency" }

You can add a maximum of 10 unique headers (repetitions of the same header with different values are only

counted as one). The total maximum length of the value for any one header is 2048 characters.

If you're using the Firefly C# client API library, the code looks something like this:

In this article, you learned how to add data to audit logs by using custom headers in the Azure API for FHIR.

Next, learn about other additional settings you can configure in the Azure API for FHIR.

Additional Settings

Azure IoT Connector for FHIR (preview) data flow
 3/11/2021 • 3 minutes to read • Edit Online

 Ingest

NOTE

 Normalize

This article provides an overview of data flow in Azure IoT Connector for Fast Healthcare Interoperability

Resources (FHIR®)*. You'll learn about different data processing stages within Azure IoT Connector for FHIR

that transform device data into FHIR-based Observation resources.

Diagram above shows common data flows using Azure IoT Connector for FHIR.

Below are different stages that data goes through once received by Azure IoT Connector for FHIR.

Ingest is the first stage where device data is received into Azure IoT Connector for FHIR. The ingestion endpoint

for device data is hosted on an Azure Event Hub. Azure Event Hub platform supports high scale and throughput

with ability to receive and process millions of messages per second. It also enables Azure IoT Connector for FHIR

to consume messages asynchronously, removing the need for devices to wait while device data gets processed.

JSON is the only supported format at this time for device data.

Normalize is the next stage where device data is retrieved from the above Azure Event Hub and processed using

device mapping templates. This mapping process results in transforming device data into a normalized schema.

The normalization process not only simplifies data processing at later stages but also provides the ability to

project one input message into multiple normalized messages. For instance, a device could send multiple vital

signs for body temperature, pulse rate, blood pressure, and respiration rate in a single message. This input

message would create four separate FHIR resources. Each resource would represent different vital sign, with the

input message projected into four different normalized messages.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-data-flow.md
https://www.hl7.org/fhir/observation.html
https://docs.microsoft.com/en-us/azure/event-hubs/index

Group

NOTE

 Transform

NOTE

 Persist

 Next steps

Group is the next stage where the normalized messages available from the previous stage are grouped using

three different parameters: device identity, measurement type, and time period.

Device identity and measurement type grouping enable use of SampledData measurement type. This type

provides a concise way to represent a time-based series of measurements from a device in FHIR. And time

period controls the latency at which Observation resources generated by Azure IoT Connector for FHIR are

written to Azure API for FHIR.

The time period value is defaulted to 15 minutes and cannot be configured for preview.

In the Transform stage, grouped-normalized messages are processed through FHIR mapping templates.

Messages matching a template type get transformed into FHIR-based Observation resources as specified

through the mapping.

At this point, Device resource, along with its associated Patient resource, is also retrieved from the FHIR server

using the device identifier present in the message. These resources are added as a reference to the Observation

resource being created.

All identity look ups are cached once resolved to decrease load on the FHIR server. If you plan on reusing devices with

multiple patients it is advised you create a virtual device resource that is specific to the patient and send virtual device

identifier in the message payload. The virtual device can be linked to the actual device resource as a parent.

If no Device resource for a given device identifier exists in the FHIR server, the outcome depends upon the value

of Resolution Type set at the time of creation. When set to Lookup , the specific message is ignored, and the

pipeline will continue to process other incoming messages. If set to Create , Azure IoT Connector for FHIR will

create a bare-bones Device and Patient resources on the FHIR server.

Once the Observation FHIR resource is generated in the Transform stage, resource is saved into Azure API for

FHIR. If the FHIR resource is new, it will be created on the server. If the FHIR resource already existed, it will get

updated.

Click below next step to learn how to create device and FHIR mapping templates.

Azure IoT Connector for FHIR mapping templates

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

https://www.hl7.org/fhir/datatypes.html#SampledData
https://www.hl7.org/fhir/device.html
https://www.hl7.org/fhir/patient.html

Azure IoT Connector for FHIR (preview) mapping
templates

 4/5/2021 • 11 minutes to read • Edit Online

NOTE

 Device mapping

P RO P ERT Y DESC RIP T IO N

Type The name/type to classify the measurement. This value is
used to bind to the required FHIR mapping template.
Multiple templates can output to the same type allowing
you to map different representations across multiple devices
to a single common output.

OccurenceTimeUtc The time the measurement occurred.

DeviceId The identifier for the device. This value should match an
identifier on the device resource that exists on the
destination FHIR server.

Proper ties Extract at least one property so the value can be saved in
the Observation resource created. Properties are a collection
of key value pairs extracted during normalization.

This article details how to configure Azure IoT Connector for Fast Healthcare Interoperability Resources

(FHIR®)* using mapping templates.

The Azure IoT Connector for FHIR requires two types of JSON-based mapping templates. The first type, Device

mapping, is responsible for mapping the device payloads sent to the devicedata Azure Event Hub end point. It

extracts types, device identifiers, measurement date time, and the measurement value(s). The second type, FHIR

mapping, controls the mapping for FHIR resource. It allows configuration of the length of the observation

period, FHIR data type used to store the values, and terminology code(s).

The mapping templates are composed into a JSON document based on their type. These JSON documents are

then added to your Azure IoT Connector for FHIR through the Azure portal. The Device mapping document is

added through the Configure Device mapping page and the FHIR mapping document through the

Configure FHIR mapping page.

Mapping templates are stored in an underlying blob storage and loaded from blob per compute execution. Once updated

they should take effect immediately.

Device mapping provides mapping functionality to extract device content into a common format for further

evaluation. Each message received is evaluated against all templates. This approach allows a single inbound

message to be projected to multiple outbound messages, which are later mapped to different observations in

FHIR. The result is a normalized data object representing the value or values parsed by the templates. The

normalized data model has a few required properties that must be found and extracted:

Below is a conceptual example of what happens during normalization.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/iot-mapping-templates.md

The content payload itself is an Azure Event Hub message, which is composed of three parts: Body, Properties,

and SystemProperties. The Body is a byte array representing an UTF-8 encoded string. During template

evaluation, the byte array is automatically converted into the string value. Properties is a key value collection

for use by the message creator. SystemProperties is also a key value collection reserved by the Azure Event Hub

framework with entries automatically populated by it.

{
 "Body": {
 "content": "value"
 },
 "Properties": {
 "key1": "value1",
 "key2": "value2"
 },
 "SystemProperties": {
 "x-opt-sequence-number": 1,
 "x-opt-enqueued-time": "2019-02-01T22:46:01.8750000Z",
 "x-opt-offset": 1,
 "x-opt-partition-key": "1"
 }
}

 Mapping with JSON path

 JsonPathContentTemplate

P RO P ERT Y DESC RIP T IO N EXA M P L E

TypeName The type to associate with
measurements that match the
template.

heartrate

TypeMatchExpression The JSON Path expression that is
evaluated against the Event Hub
payload. If a matching JToken is found,
the template is considered a match. All
subsequent expressions are evaluated
against the extracted JToken matched
here.

$..[?(@heartRate)]

TimestampExpression The JSON Path expression to extract
the timestamp value for the
measurement's OccurenceTimeUtc.

$.endDate

DeviceIdExpression The JSON Path expression to extract
the device identifier.

$.deviceId

PatientIdExpression Optional: The JSON Path expression to
extract the patient identifier.

$.patientId

EncounterIdExpression Optional: The JSON Path expression to
extract the encounter identifier.

$.encounterId

Values[].ValueName The name to associate with the value
extracted by the subsequent
expression. Used to bind the required
value/component in the FHIR mapping
template.

hr

The three device content template types supported today rely on JSON Path to both match the required

template and extracted values. More information on JSON Path can be found here. All three template types use

the JSON .NET implementation for resolving JSON Path expressions.

The JsonPathContentTemplate allows matching on and extracting values from an Event Hub message using

JSON Path.

https://goessner.net/articles/JsonPath/
https://www.newtonsoft.com/json/help/html/QueryJsonSelectTokenJsonPath.htm

Values[].ValueExpression The JSON Path expression to extract
the required value.

$.heartRate

Values[].Required Will require the value to be present in
the payload. If not found, a
measurement will not be generated
and an InvalidOperationException will
be thrown.

true

P RO P ERT Y DESC RIP T IO N EXA M P L E

 Ex a m p l e s

{
 "Body": {
 "heartRate": "78",
 "endDate": "2019-02-01T22:46:01.8750000Z",
 "deviceId": "device123"
 },
 "Properties": {},
 "SystemProperties": {}
}

{
 "templateType": "JsonPathContent",
 "template": {
 "typeName": "heartrate",
 "typeMatchExpression": "$..[?(@heartRate)]",
 "deviceIdExpression": "$.deviceId",
 "timestampExpression": "$.endDate",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.heartRate",
 "valueName": "hr"
 }
]
 }
}

{
 "Body": {
 "systolic": "123",
 "diastolic" : "87",
 "endDate": "2019-02-01T22:46:01.8750000Z",
 "deviceId": "device123"
 },
 "Properties": {},
 "SystemProperties": {}
}

Hear t rate

Message

Template

Blood pressure

Message

{
 "typeName": "bloodpressure",
 "typeMatchExpression": "$..[?(@systolic && @diastolic)]",
 "deviceIdExpression": "$.deviceId",
 "timestampExpression": "$.endDate",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.systolic",
 "valueName": "systolic"
 },
 {
 "required": "true",
 "valueExpression": "$.diastolic",
 "valueName": "diastolic"
 }
]
}

{
 "Body": {
 "heartRate": "78",
 "steps": "2",
 "endDate": "2019-02-01T22:46:01.8750000Z",
 "deviceId": "device123"
 },
 "Properties": {},
 "SystemProperties": {}
}

{
 "templateType": "JsonPathContent",
 "template": {
 "typeName": "heartrate",
 "typeMatchExpression": "$..[?(@heartRate)]",
 "deviceIdExpression": "$.deviceId",
 "timestampExpression": "$.endDate",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.heartRate",
 "valueName": "hr"
 }
]
 }
}

Template

Project multiple measurements from single message

Message

Template 1

Template 2

{
 "templateType": "JsonPathContent",
 "template": {
 "typeName": "stepcount",
 "typeMatchExpression": "$..[?(@steps)]",
 "deviceIdExpression": "$.deviceId",
 "timestampExpression": "$.endDate",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.steps",
 "valueName": "steps"
 }
]
 }
}

{
 "Body": [
 {
 "heartRate": "78",
 "endDate": "2019-02-01T22:46:01.8750000Z",
 "deviceId": "device123"
 },
 {
 "heartRate": "81",
 "endDate": "2019-02-01T23:46:01.8750000Z",
 "deviceId": "device123"
 },
 {
 "heartRate": "72",
 "endDate": "2019-02-01T24:46:01.8750000Z",
 "deviceId": "device123"
 }
],
 "Properties": {},
 "SystemProperties": {}
}

{
 "templateType": "JsonPathContent",
 "template": {
 "typeName": "heartrate",
 "typeMatchExpression": "$..[?(@heartRate)]",
 "deviceIdExpression": "$.deviceId",
 "timestampExpression": "$.endDate",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.heartRate",
 "valueName": "hr"
 }
]
 }
}

 IotJsonPathContentTemplate

Project multiple measurements from array in message

Message

Template

 Ex a m p l e s

{
 "Body": {
 "heartRate": "78"
 },
 "Properties": {
 "iothub-creation-time-utc" : "2019-02-01T22:46:01.8750000Z"
 },
 "SystemProperties": {
 "iothub-connection-device-id" : "device123"
 }
}

{
 "templateType": "JsonPathContent",
 "template": {
 "typeName": "heartrate",
 "typeMatchExpression": "$..[?(@Body.heartRate)]",
 "deviceIdExpression": "$.deviceId",
 "timestampExpression": "$.endDate",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.Body.heartRate",
 "valueName": "hr"
 }
]
 }
}

The IotJsonPathContentTemplate is similar to the JsonPathContentTemplate except the DeviceIdExpression and

TimestampExpression aren't required.

The assumption when using this template is the messages being evaluated were sent using the Azure IoT Hub

Device SDKs or Export Data (legacy) feature of Azure IoT Central. When using these SDKs, the device identity

(assuming the device identifier from Azure Iot Hub/Central is registered as an identifer for a device resource on

the destination FHIR server) and the timestamp of the message are known. If you're using Azure IoT Hub Device

SDKs but are using custom properties in the message body for the device identity or measurement timestamp,

you can still use the JsonPathContentTemplate.

Note: When using the IotJsonPathContentTemplate, the TypeMatchExpression should resolve to the entire

message as a JToken. See the examples below.

Hear t rate

Message

Template

Blood pressure

Message

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data-legacy
https://docs.microsoft.com/en-us/azure/iot-central/core/overview-iot-central

{
 "Body": {
 "systolic": "123",
 "diastolic" : "87"
 },
 "Properties": {
 "iothub-creation-time-utc" : "2019-02-01T22:46:01.8750000Z"
 },
 "SystemProperties": {
 "iothub-connection-device-id" : "device123"
 }
}

{
 "typeName": "bloodpressure",
 "typeMatchExpression": "$..[?(@Body.systolic && @Body.diastolic)]",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.Body.systolic",
 "valueName": "systolic"
 },
 {
 "required": "true",
 "valueExpression": "$.Body.diastolic",
 "valueName": "diastolic"
 }
]
}

 IotCentralJsonPathContentTemplate

 Ex a m p l e s

Template

The IotCentralJsonPathContentTemplate also doesn't require DeviceIdExpression and TimestampExpression, and

used when messages being evaluated are sent through the Export Data feature of Azure IoT Central. When using

this feature, the device identity (assuming the device identifier from Azure Iot Central is registered as an

identifer for a device resource on the destination FHIR server) and the timestamp of the message are known. If

you're using Azure IoT Central's Data Export feature but are using custom properties in the message body for

the device identity or measurement timestamp, you can still use the JsonPathContentTemplate.

Note: When using the IotCentralJsonPathContentTemplate, the TypeMatchExpression should resolve to the entire

message as a JToken. See the examples below.

Hear t rate

Message

https://docs.microsoft.com/en-us/azure/iot-central/core/howto-export-data
https://docs.microsoft.com/en-us/azure/iot-central/core/overview-iot-central

{
 "applicationId": "1dffa667-9bee-4f16-b243-25ad4151475e",
 "messageSource": "telemetry",
 "deviceId": "1vzb5ghlsg1",
 "schema": "default@v1",
 "templateId": "urn:qugj6vbw5:___qbj_27r",
 "enqueuedTime": "2020-08-05T22:26:55.455Z",
 "telemetry": {
 "HeartRate": "88",
 },
 "enrichments": {
 "userSpecifiedKey": "sampleValue"
 },
 "messageProperties": {
 "messageProp": "value"
 }
}

{
 "templateType": "IotCentralJsonPathContent",
 "template": {
 "typeName": "heartrate",
 "typeMatchExpression": "$..[?(@telemetry.HeartRate)]",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.telemetry.HeartRate",
 "valueName": "hr"
 }
]
 }
}

{
 "applicationId": "1dffa667-9bee-4f16-b243-25ad4151475e",
 "messageSource": "telemetry",
 "deviceId": "1vzb5ghlsg1",
 "schema": "default@v1",
 "templateId": "urn:qugj6vbw5:___qbj_27r",
 "enqueuedTime": "2020-08-05T22:26:55.455Z",
 "telemetry": {
 "BloodPressure": {
 "Diastolic": "87",
 "Systolic": "123"
 }
 },
 "enrichments": {
 "userSpecifiedKey": "sampleValue"
 },
 "messageProperties": {
 "messageProp": "value"
 }
}

Template

Blood pressure

Message

Template

{
 "templateType": "IotCentralJsonPathContent",
 "template": {
 "typeName": "bloodPressure",
 "typeMatchExpression": "$..[?(@telemetry.BloodPressure.Diastolic &&
@telemetry.BloodPressure.Systolic)]",
 "values": [
 {
 "required": "true",
 "valueExpression": "$.telemetry.BloodPressure.Diastolic",
 "valueName": "bp_diastolic"
 },
 {
 "required": "true",
 "valueExpression": "$.telemetry.BloodPressure.Systolic",
 "valueName": "bp_systolic"
 }
]
 }
}

 FHIR mapping

 CodeValueFhirTemplate

P RO P ERT Y DESC RIP T IO N

TypeName The type of measurement this template should bind to.
There should be at least one Device mapping template that
outputs this type.

PeriodInter val The period of time the observation created should represent.
Supported values are 0 (an instance), 60 (an hour), 1440 (a
day).

Categor y Any number of CodeableConcepts to classify the type of
observation created.

Codes One or more Codings to apply to the observation created.

Codes[].Code The code for the Coding.

Codes[].System The system for the Coding.

Codes[].Display The display for the Coding.

Once the device content is extracted into a normalized model, the data is collected and grouped according to

device identifier, measurement type, and time period. The output of this grouping is sent for conversion into a

FHIR resource (Observation currently). Here the FHIR mapping template controls how the data is mapped into a

FHIR Observation. Should an observation be created for a point in time or over a period of an hour? What codes

should be added to the observation? Should value be represented as SampledData or a Quantity? These data

types are all options the FHIR mapping configuration controls.

The CodeValueFhirTemplate is currently the only template supported in FHIR mapping at this time. It allows you

to define codes, the effective period, and the value of the observation. Multiple value types are supported:

SampledData, CodeableConcept, and Quantity. Along with these configurable values, the identifier for the

Observation resource and linking to the proper Device and Patient resources are handled automatically.

https://www.hl7.org/fhir/observation.html
https://www.hl7.org/fhir/datatypes.html#SampledData
https://www.hl7.org/fhir/datatypes.html#Quantity
https://www.hl7.org/fhir/datatypes.html#SampledData
https://www.hl7.org/fhir/datatypes.html#CodeableConcept
https://www.hl7.org/fhir/datatypes.html#Quantity
http://hl7.org/fhir/datatypes-definitions.html#codeableconcept
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding

Value The value to extract and represent in the observation. For
more information, see Value Type Templates.

Components Optional: One or more components to create on the
observation.

Components[].Codes One or more Codings to apply to the component.

Components[].Value The value to extract and represent in the component. For
more information, see Value Type Templates.

P RO P ERT Y DESC RIP T IO N

 Value type templates

 SampledData

P RO P ERT Y DESC RIP T IO N

DefaultPeriod The default period in milliseconds to use.

Unit The unit to set on the origin of the SampledData.

 Quantity

P RO P ERT Y DESC RIP T IO N

Unit Unit representation.

Code Coded form of the unit.

System System that defines the coded unit form.

 CodeableConcept

P RO P ERT Y DESC RIP T IO N

Text Plain text representation.

Codes One or more Codings to apply to the observation created.

Codes[].Code The code for the Coding.

Codes[].System The system for the Coding.

Below are the currently supported value type templates. In the future, further templates may be added.

Represents the SampledData FHIR data type.Observation measurements are written to a value stream starting

at a point in time and incrementing forward using the period defined. If no value is present, an E will be written

into the data stream. If the period is such that two more values occupy the same position in the data stream, the

latest value is used. The same logic is applied when an observation using the SampledData is updated.

Represents the Quantity FHIR data type. If more than one value is present in the grouping, only the first value is

used. When new value arrives that maps to the same observation it will overwrite the old value.

Represents the CodeableConcept FHIR data type. The actual value isn't used.

http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes.html#SampledData
http://hl7.org/fhir/datatypes.html#Quantity
http://hl7.org/fhir/datatypes.html#CodeableConcept
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding
http://hl7.org/fhir/datatypes-definitions.html#coding

Codes[].Display The display for the Coding.

P RO P ERT Y DESC RIP T IO N

 Examples

{
 "templateType": "CodeValueFhir",
 "template": {
 "codes": [
 {
 "code": "8867-4",
 "system": "http://loinc.org",
 "display": "Heart rate"
 }
],
 "periodInterval": 60,
 "typeName": "heartrate",
 "value": {
 "defaultPeriod": 5000,
 "unit": "count/min",
 "valueName": "hr",
 "valueType": "SampledData"
 }
 }
}

{
 "templateType": "CodeValueFhir",
 "template": {
 "codes": [
 {
 "code": "55423-8",
 "system": "http://loinc.org",
 "display": "Number of steps"
 }
],
 "periodInterval": 60,
 "typeName": "stepsCount",
 "value": {
 "defaultPeriod": 5000,
 "unit": "",
 "valueName": "steps",
 "valueType": "SampledData"
 }
 }
}

Hear t rate - SampledData

Steps - SampledData

Blood pressure - SampledData

http://hl7.org/fhir/datatypes-definitions.html#coding

{
 "templateType": "CodeValueFhir",
 "template": {
 "codes": [
 {
 "code": "85354-9",
 "display": "Blood pressure panel with all children optional",
 "system": "http://loinc.org"
 }
],
 "periodInterval": 60,
 "typeName": "bloodpressure",
 "components": [
 {
 "codes": [
 {
 "code": "8867-4",
 "display": "Diastolic blood pressure",
 "system": "http://loinc.org"
 }
],
 "value": {
 "defaultPeriod": 5000,
 "unit": "mmHg",
 "valueName": "diastolic",
 "valueType": "SampledData"
 }
 },
 {
 "codes": [
 {
 "code": "8480-6",
 "display": "Systolic blood pressure",
 "system": "http://loinc.org"
 }
],
 "value": {
 "defaultPeriod": 5000,
 "unit": "mmHg",
 "valueName": "systolic",
 "valueType": "SampledData"
 }
 }
]
 }
}

Blood pressure - Quantity

{
 "templateType": "CodeValueFhir",
 "template": {
 "codes": [
 {
 "code": "85354-9",
 "display": "Blood pressure panel with all children optional",
 "system": "http://loinc.org"
 }
],
 "periodInterval": 0,
 "typeName": "bloodpressure",
 "components": [
 {
 "codes": [
 {
 "code": "8867-4",
 "display": "Diastolic blood pressure",
 "system": "http://loinc.org"
 }
],
 "value": {
 "unit": "mmHg",
 "valueName": "diastolic",
 "valueType": "Quantity"
 }
 },
 {
 "codes": [
 {
 "code": "8480-6",
 "display": "Systolic blood pressure",
 "system": "http://loinc.org"
 }
],
 "value": {
 "unit": "mmHg",
 "valueName": "systolic",
 "valueType": "Quantity"
 }
 }
]
 }
}

Device removed - CodeableConcept

{
 "templateType": "CodeValueFhir",
 "template": {
 "codes": [
 {
 "code": "deviceEvent",
 "system": "https://www.mydevice.com/v1",
 "display": "Device Event"
 }
],
 "periodInterval": 0,
 "typeName": "deviceRemoved",
 "value": {
 "text": "Device Removed",
 "codes": [
 {
 "code": "deviceRemoved",
 "system": "https://www.mydevice.com/v1",
 "display": "Device Removed"
 }
],
 "valueName": "deviceRemoved",
 "valueType": "CodeableConcept"
 }
 }
}

 Next steps
Check out frequently asked questions on Azure IoT Connector for FHIR (preview).

Azure IoT Connector for FHIR FAQs

*In the Azure portal, Azure IoT Connector for FHIR is referred to as IoT Connector (preview). FHIR is a registered

trademark of HL7 and is used with the permission of HL7.

Azure Policy Regulatory Compliance controls for
Azure API for FHIR

 5/14/2021 • 2 minutes to read • Edit Online

IMPORTANT

 CMMC Level 3

DO M A IN C O N T RO L ID C O N T RO L T IT L E
P O L IC Y P O L IC Y VERSIO N

Access Control AC.1.001 Limit information
system access to
authorized users,
processes acting on
behalf of authorized
users, and devices
(including other
information systems).

CORS should not
allow every domain
to access your API
for FHIR

1.0.0

Access Control AC.1.002 Limit information
system access to the
types of transactions
and functions that
authorized users are
permitted to execute.

CORS should not
allow every domain
to access your API
for FHIR

1.0.0

Access Control AC.2.016 Control the flow of
CUI in accordance
with approved
authorizations.

CORS should not
allow every domain
to access your API
for FHIR

1.0.0

Regulatory Compliance in Azure Policy provides Microsoft created and managed initiative definitions, known as

built-ins, for the compliance domains and security controls related to different compliance standards. This

page lists the compliance domains and security controls for Azure API for FHIR. You can assign the built-ins

for a security control individually to help make your Azure resources compliant with the specific standard.

The title of each built-in policy definition links to the policy definition in the Azure portal. Use the link in the

Policy Version column to view the source on the Azure Policy GitHub repo.

Each control below is associated with one or more Azure Policy definitions. These policies may help you assess compliance

with the control; however, there often is not a one-to-one or complete match between a control and one or more policies.

As such, Compliant in Azure Policy refers only to the policies themselves; this doesn't ensure you're fully compliant with

all requirements of a control. In addition, the compliance standard includes controls that aren't addressed by any Azure

Policy definitions at this time. Therefore, compliance in Azure Policy is only a partial view of your overall compliance status.

The associations between controls and Azure Policy Regulatory Compliance definitions for these compliance standards

may change over time.

To review how the available Azure Policy built-ins for all Azure services map to this compliance standard, see

Azure Policy Regulatory Compliance - CMMC Level 3. For more information about this compliance standard, see

Cybersecurity Maturity Model Certification (CMMC).

(A ZURE PO RTA L) (GIT HUB)

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/security-controls-policy.md
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/regulatory-compliance
https://github.com/Azure/azure-policy
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/governance/policy/how-to/get-compliance-data
https://docs.microsoft.com/en-us/azure/governance/policy/samples/cmmc-l3
https://www.acq.osd.mil/cmmc/docs/CMMC_Model_Main_20200203.pdf
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json

Configuration
Management

CM.3.068 Restrict, disable, or
prevent the use of
nonessential
programs, functions,
ports, protocols, and
services.

CORS should not
allow every domain
to access your API
for FHIR

1.0.0

System and
Communications
Protection

SC.3.177 Employ FIPS-
validated
cryptography when
used to protect the
confidentiality of CUI.

Azure API for FHIR
should use a
customer-managed
key to encrypt data
at rest

1.0.1

System and
Communications
Protection

SC.3.183 Deny network
communications
traffic by default and
allow network
communications
traffic by exception
(i.e., deny all, permit
by exception).

CORS should not
allow every domain
to access your API
for FHIR

1.0.0

DO M A IN C O N T RO L ID C O N T RO L T IT L E
P O L IC Y P O L IC Y VERSIO N

 Next steps
Learn more about Azure Policy Regulatory Compliance.

See the built-ins on the Azure Policy GitHub repo.

https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F051cba44-2429-45b9-9649-46cec11c7119
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_EnableByok_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/regulatory-compliance
https://github.com/Azure/azure-policy

Frequently asked questions about the Azure API for
FHIR

 6/8/2021 • 7 minutes to read • Edit Online

 Azure API for FHIR: The Basics
 What is FHIR?

 Is the data behind the FHIR APIs stored in Azure?

 What identity provider do you support?

 What is the Recovery Point Objective (RPO) for the Azure API for FHIR?

 What FHIR version do you support?

 What's the difference between 'Microsoft FHIR Server for Azure' and the 'Azure API for FHIR'?

 In which regions is Azure API for FHIR Available?

The Fast Healthcare Interoperability Resources (FHIR - Pronounced "fire") is an interoperability standard

intended to enable the exchange of healthcare data between different health systems. This standard was

developed by the HL7 organization and is being adopted by healthcare organizations around the world. The

most current version of FHIR available is R4 (Release 4). The Azure API for FHIR supports R4 and also supports

the previous version STU3 (Standard for Trial Use 3). For more information on FHIR, visit HL7.org.

Yes, the data is stored in managed databases in Azure. The Azure API for FHIR does not provide direct access to

the underlying data store.

We currently support Microsoft Azure Active Directory as the identity provider.

The Azure API for FHIR is backed by Cosmos DB as our persistence provider. Because of this, the RPO for the

service equals Cosmos DB (single region) and is < 240 minutes.

We support versions 4.0.0 and 3.0.1 on both the Azure API for FHIR (PaaS) and FHIR Server for Azure (open

source).

For details, see Supported features. Read about what has changed between FHIR versions (i.e. STU3 to R4) in the

version history for HL7 FHIR.

Azure IoT Connector for FHIR (preview) currently supports only FHIR version R4, and is visible only on R4

instances of Azure API for FHIR.

The Azure API for FHIR is a hosted and managed version of the open-source Microsoft FHIR Server for Azure. In

the managed service, Microsoft provides all maintenance and updates.

When you run the FHIR Server for Azure, you have direct access to the underlying services, but are responsible

for maintaining and updating the server and all required compliance work if you're storing PHI data.

For a development standpoint, every feature that doesn't apply only to the managed service is first deployed to

the open-source Microsoft FHIR Server for Azure. Once it has been validated in open-source, it will be released

to the PaaS Azure API for FHIR solution. The time between the release in open-source and PaaS depends on the

complexity of the feature and other roadmap priorities. This is the same process for all of our services, such as

Azure IoT Connector for FHIR (preview).

Currently, we have general availability for both public and government in multiple geo-regions. For information

about government cloud services at Microsoft, check out Azure services by FedRAMP.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-faq.md
http://hl7.org/fhir/summary.html
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://hl7.org/fhir/R4/history.html
https://azure.microsoft.com/global-infrastructure/services/?products=azure-api-for-fhir®ions=non-regional,us-east,us-east-2,us-central,us-north-central,us-south-central,us-west-central,us-west,us-west-2,canada-east,canada-central,usgov-non-regional,us-dod-central,us-dod-east,usgov-arizona,usgov-texas,usgov-virginia
https://docs.microsoft.com/en-us/azure/azure-government/compliance/azure-services-in-fedramp-auditscope

Where can I see what is releasing into the Azure API for FHIR?

 What is SMART on FHIR?

 Where can I find what version of FHIR is running on my database.

 FHIR Implementations and Specifications
 Can I create a custom FHIR resource?

 Are extensions supported on Azure API for FHIR?

 What is the limit on _count?

 Are there any limitations on the Group Export functionality?

 Can I post a bundle to the Azure API for FHIR?

 How can I get all resources for a single patient in the Azure API for FHIR?

 What is the default sort when searching for resources in Azure API for FHIR?

To see some of what is releasing into the Azure API for FHIR, please refer to the release of the open-source FHIR

Server. We have worked to tag items with Azure-API-for-FHIR if they will release to the managed service and are

usually available two weeks after they are on the release page in open-source. We have also included

instructions on how to test the build here if you would like to test in your own environment. We are evaluating

how to best share additional managed service updates.

SMART (Substitutable Medical Applications and Reusable Technology) on FHIR is a set of open specifications to

integrate partner applications with FHIR Servers and other Health IT systems, such as Electronic Health Records

and Health Information Exchanges. By creating a SMART on FHIR application, you can ensure that your

application can be accessed and leveraged by a plethora of different systems. Authentication and Azure API for

FHIR. To learn more about SMART, visit SMART Health IT.

You can find the exact FHIR version exposed in the capability statement under the "fhirVersion" property.

We do not allow custom FHIR resources. If you need a custom FHIR resource, you can build a custom resource

on top of the Basic resource with extensions.

We allow you to load any valid FHIR JSON data into the server. If you want to store the structure definition that

defines the extension, you could save this as a structure definition resource. To search on extensions, you'll need

to define your own search parameters.

The current limit on _count is 1000. If you set _count to more than 1000, you'll receive a warning in the bundle

that only 1000 records will be shown.

For Group Export we only export the included references from the group, not all the characteristics of the group

resource.

We currently support posting batch bundles but do not support posting transaction bundles in the Azure API for

FHIR. You can use the open-source FHIR Server backed by SQL to post transaction bundles.

We support compartment search in the Azure API for FHIR. This allows you to get all the resources related to a

specific patient. Note that right now compartment includes all the resources related to the patient but not the

patient itself so you will need to also search to get the patient if you need the patient resource in your results.

Some examples of this are below:

GET Patient//*

GET Patient//Observation

GET Patient//Observation?code=8302-2

We support sorting by the date last updated: _sort=_lastUpdated. For more information about other supported

search parameters, see Overview of FHIR Search.

https://github.com/microsoft/fhir-server/releases
https://github.com/microsoft/fhir-server/blob/master/docs/Testing-Releases.md
https://smarthealthit.org/
http://www.hl7.org/fhir/basic.html
https://www.hl7.org/fhir/extensibility.html
https://nam06.safelinks.protection.outlook.com/?url=https%253A%252F%252Fdocs.microsoft.com%252Fazure%252Fhealthcare-apis%252Ffhir%252Fhow-to-do-custom-search&data=04%257C01%257Cv-stevewohl%2540microsoft.com%257Cc6a08c7f0c86433f248c08d925377d85%257C72f988bf86f141af91ab2d7cd011db47%257C1%257C0%257C637581742517376233%257CUnknown%257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%253D%257C1000&sdata=Ws%252FVQ2N33sMagzs393hmR67M9dNaL6WCLXyxXtor6PM%253D&reserved=0
https://www.hl7.org/fhir/group.html
https://www.hl7.org/fhir/valueset-bundle-type.html
https://www.hl7.org/fhir/compartmentdefinition.html

 Does the Azure API for FHIR support $everything?

 How does $export work?

 Is de-identified export available at Patient and Group level as well?

 Using Azure API for FHIR
 How do I enable log analytics for Azure API for FHIR?

 Where can I see some examples of using the Azure API for FHIR within a workflow?

 Where can I see an example of connecting a web application to Azure API for FHIR?

 Azure API for FHIR Features and Services
 Is there a way to encrypt my data using my personal key not a default key?

 Azure API for FHIR: Preview Features
 Can I configure scaling capacity for Azure IoT Connector for FHIR (preview)?

 Why can't I install Azure IoT Connector for FHIR (preview) when Private Link is enabled on Azure API for
FHIR?

No. At this time we do not support $everything. However it can be achieved with two API calls. For example to

get Patient$everything, you can first grab the patient record using /Patient/[ID] and then a second call to retrieve

all the patient data using /Patient/[ID]/*.

You can see more details at this community post.

$export is part of the FHIR specification: https://hl7.org/fhir/uv/bulkdata/export/index.html. If the FHIR service is

configured with a managed identity and a storage account, and if the managed identity has access to that

storage account - you can simply call $export on the FHIR API and all the FHIR resources will be exported to the

storage account. For more information, check out our article on $export.

Anonymized export is currently supported only on a full system export (/$export), and not for Patient export

(/Patient/$export). We are working on making it available at the Patient level as well.

We enable diagnostic logging and allow reviewing sample queries for these logs. For details on enabling audit

logs and sample queries, check out this section. If you want to include additional information in the logs, check

out using custom HTTP headers.

We have a collection of reference architectures available on the Health Architecture GitHub page.

We have a Health Architecture GitHub page that contains example applications and scenarios. It illustrates how

to connect a web application to Azure API for FHIR.

Yes, Azure API for FHIR allows configuring customer-managed keys, leveraging support from Cosmos DB. For

more information about encrypting your data with a personal key, check out this section.

Since Azure IoT Connector for FHIR is free of charge during public preview, its scaling capacity is fixed and

limited. Azure IoT Connector for FHIR configuration available in public preview is expected to provide a

throughput of about 200 messages per second. Some form of resource capacity configuration will be made

available in General Availability (GA).

Azure IoT Connector for FHIR doesn't support Private Link capability at this time. Hence, if you have Private Link

enabled on Azure API for FHIR, you can't install Azure IoT Connector for FHIR and vice-versa. This limitation is

expected to go away when Azure IoT Connector for FHIR is available for General Availability (GA).

https://chat.fhir.org/#narrow/stream/179166-implementers/topic/.24everything.20with.20_type
https://hl7.org/fhir/uv/bulkdata/export/index.html
https://github.com/microsoft/health-architectures
https://aka.ms/health-architectures

Features
 6/8/2021 • 4 minutes to read • Edit Online

 FHIR version

 REST API

A P I SUP P O RT ED - PA A S
SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T

read Yes Yes Yes

vread Yes Yes Yes

update Yes Yes Yes

update with
optimistic locking

Yes Yes Yes

update (conditional) Yes Yes Yes

patch No No No

delete Yes Yes Yes See Note below.

delete (conditional) Yes Yes Yes

history Yes Yes Yes

create Yes Yes Yes Support both
POST/PUT

create (conditional) Yes Yes Yes Issue #1382

search Partial Partial Partial See Overview of FHIR
Search.

chained search Partial Yes Partial See Note 2 below.

reverse chained
search

Partial Yes Partial See Note 2 below.

capabilities Yes Yes Yes

Azure API for FHIR provides a fully managed deployment of the Microsoft FHIR Server for Azure. The server is

an implementation of the FHIR standard. This document lists the main features of the FHIR Server.

Latest version supported: 4.0.1

Previous versions also currently supported include: 3.0.2

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-features-supported.md
https://hl7.org/fhir
https://github.com/microsoft/fhir-server/issues/1382

batch Yes Yes Yes

transaction No Yes No

paging Partial Partial Partial self and next

are supported

intermediaries No No No

A P I SUP P O RT ED - PA A S
SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T

NOTE

 Extended Operations

SEA RC H PA RA M ET ER
T Y P E SUP P O RT ED - PA A S

SUP P O RT ED - O SS
(SQ L)

SUP P O RT ED - O SS
(C O SM O S DB) C O M M EN T

$export (whole
system)

Yes Yes Yes

Patient/$export Yes Yes Yes

Group/$export Yes Yes Yes

$convert-data Yes Yes Yes

$validate Yes Yes Yes

$member-match Yes Yes Yes

$patient-everything No No Yes

Delete defined by the FHIR spec requires that after deleting, subsequent non-version specific reads of a resource returns a

410 HTTP status code and the resource is no longer found through searching. The Azure API for FHIR also enables you to

fully delete (including all history) the resource. To fully delete the resource, you can pass a parameter settings

hardDelete to true (DELETE {server}/{resource}/{id}?hardDelete=true). If you do not pass this parameter or set

hardDelete to false, the historic versions of the resource will still be available.

Note 2

Adds MVP support for Chained and Reverse Chained FHIR Search in CosmosDB.

In the Azure API for FHIR and the open-source FHIR server backed by Cosmos, the chained search and

reverse chained search is an MVP implementation. To accomplish chained search on Cosmos DB, the

implementation walks down the search expression and issues sub-queries to resolve the matched

resources. This is done for each level of the expression. If any query returns more than 100 results, an

error will be thrown. By default, chained search is behind a feature flag. To use the chained searching on

Cosmos DB, use the header x-ms-enable-chained-search: true . For more details, see PR 1695.

All the operations that are supported that extend the RESTful API.

https://github.com/microsoft/fhir-server/pull/1695

Persistence

 Role-based access control

 Service limits

 Performance expectations

O F RUS RESO URC ES/ SEC M A X STO RA GE (GB) *

400 5-10 10

1,000 100-150 25

10,000 225-400 250

100,000 2,500-4,000 2,500

The Microsoft FHIR Server has a pluggable persistence module (see

Microsoft.Health.Fhir.Core.Features.Persistence).

Currently the FHIR Server open-source code includes an implementation for Azure Cosmos DB and SQL

Database.

Cosmos DB is a globally distributed multi-model (SQL API, MongoDB API, etc.) database. It supports different

consistency levels. The default deployment template configures the FHIR Server with Strong consistency, but

the consistency policy can be modified (generally relaxed) on a request by request basis using the

x-ms-consistency-level request header.

The FHIR Server uses Azure Active Directory for access control. Specifically, role-based access control (RBAC) is

enforced, if the FhirServer:Security:Enabled configuration parameter is set to true , and all requests (except

/metadata) to the FHIR Server must have Authorization request header set to Bearer <TOKEN> . The token must

contain one or more roles as defined in the roles claim. A request will be allowed if the token contains a role

that allows the specified action on the specified resource.

Currently, the allowed actions for a given role are applied globally on the API.

Request Units (RUs) - You can configure up to 10,000 RUs in the portal for Azure API for FHIR. You will

need a minimum of 400 RUs or 40 RUs/GB, whichever is larger. If you need more than 10,000 RUs, you

can put in a support ticket to have this increased. The maximum available is 1,000,000.

Bundle size - Each bundle is limited to 500 items.

Data size - Data/Documents must each be slightly less than 2 MB.

Subscr iption L imit - By default, each subscription is limited to a maximum of 10 FHIR Server Instances.

If you need more instances per subscription, open a support ticket and provide details about your needs.

Concurrent connections and Instances - By default, you have 15 concurrent connections on two

instances in the cluster (for a total of 30 concurrent requests). If you need more concurrent requests,

open a support ticket and provide details about your needs.

The performance of the system is dependent on the number of RUs, concurrent connections, and the type of

operations you're performing (Put, Post, etc.). Below are some general ranges of what you can expect based on

configured RUs. In general, performance scales linearly with an increase in RUs:

https://github.com/Microsoft/fhir-server/tree/master/src/Microsoft.Health.Fhir.Core/Features/Persistence
https://docs.microsoft.com/en-us/azure/cosmos-db/index-overview
https://azure.microsoft.com/services/sql-database/
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://azure.microsoft.com/services/active-directory/
https://docs.microsoft.com/en-us/azure/cosmos-db/concepts-limits

 Next steps

Note: Per Cosmos DB requirement, there is a requirement of a minimum throughput of 40 RU/s per GB of

storage.

In this article, you've read about the supported FHIR features in Azure API for FHIR. Next deploy the Azure API

for FHIR.

Deploy Azure API for FHIR

Related GitHub Projects
 3/24/2021 • 2 minutes to read • Edit Online

 FHIR Server

 Data Conversion & Anonymization
 FHIR Converter

 FHIR Converter - VS Code Extension

 FHIR Tools for Anonymization

 IoT Connector
 Integration with IoT Hub and IoT Central

 HealthKit and FHIR Integration

We have many open-source projects on GitHub that provide you the source code and instructions to deploy

services for various uses. You are always welcome to visit our GitHub repositories to learn and experiment with

our features and products.

microsoft/fhir-server: open-source FHIR Server, which is the basis for Azure API for FHIR

To see the latest releases, please refer to Release Notes

microsoft/fhir-server-samples: a sample environment

microsoft/FHIR-Converter: a conversion utility to translate legacy data formats into FHIR

Integrated with the Azure API for FHIR as well as FHIR server for Azure in the form of $convert-data

operation

Ongoing improvements in OSS, and continual integration to the FHIR servers

microsoft/FHIR-Tools-for-Anonymization: a set of tools for helping with data (in FHIR format) anonymization

Integrated with the Azure API for FHIR as well as FHIR server for Azure in the form of ‘de-identified export’

microsoft/vscode-azurehealthcareapis-tools: a VS Code extension that contains a collection of tools to work

with Azure Healthcare APIs

Released to Visual Studio Marketplace

Used for authoring Liquid templates to be used in the FHIR Converter

microsoft/iomt-fhir: integration with IoT Hub or IoT Central to FHIR with data normalization and FHIR

conversion of the normalized data

Normalization: device data information is extracted into a common format for further processing

FHIR Conversion: normalized and grouped data is mapped to FHIR. Observations are created or updated

according to configured templates and linked to the device and patient.

Tools to help build the conversation map: visualize the mapping configuration for normalizing the device

input data and transform it to the FHIR resources. Developers can use this tool to edit and test the mappings,

device mapping and FHIR mapping, and export them for uploading to the IoT Connector in the Azure portal.

microsoft/healthkit-on-fhir: a Swift library that automates the export of Apple HealthKit Data to a FHIR

Server

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/fhir-github-projects.md
https://github.com/microsoft/fhir-server/
https://github.com/microsoft/fhir-server/releases
https://github.com/microsoft/fhir-server-samples
https://github.com/microsoft/FHIR-Converter
https://github.com/microsoft/FHIR-Tools-for-Anonymization
https://github.com/microsoft/vscode-azurehealthcareapis-tools
https://github.com/microsoft/iomt-fhir
https://github.com/microsoft/iomt-fhir/tree/master/tools/data-mapper
https://github.com/microsoft/healthkit-on-fhir

Partner ecosystem for Azure API for FHIR
 3/11/2021 • 2 minutes to read • Edit Online

PA RT N ER C A PA B IL IT IES
SUP P O RT ED
C O UN T RIES/ REGIO N S C O N TA C T

Medal De-identification, Legacy-
FHIR conversion

USA Contact

Rhapsody Legacy-FHIR conversion USA, Australia, New
Zealand

Contact

iNTERFACEWARE Legacy-FHIR conversion USA, Canada Contact

Darena Solutions Application Development,
System Integrator

USA Contact

NewWave Application Development,
System Integrator

USA Contact

Dapasoft Application Development,
System Integrator

USA, Canada Contact

CitiusTech Application Development,
System Integrator

USA, UAE, UK Contact

Firely Application Development,
System Integrator

USA, EU Contact

Perspecta Application Development,
System Integrator

USA Contact

Aridhia Analytics USA, EU Contact

We are excited that Azure API for FHIR has been released in generally availability to all Azure Customers. We are

even more excited about the solutions that you will build with our service.

When creating an end-to-end solution built around Azure API for FHIR, you may require the help of a partner

for their unique IP or for help stitching everything together. We are hard at work growing this ecosystem of

diverse partners and I'd like to introduce you to a few of them.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/partner-ecosystem.md
https://asab.squarespace.com/asab-medal/
https://rhapsody.health/contact-us
https://www.interfaceware.com/contact
https://www.darenasolutions.com/contact
https://newwave.io/get-in-touch/
https://www.dapasoft.com/contact-us/
https://azuremarketplace.microsoft.com/marketplace/apps/citiustech.ics?tab=Overview
https://fire.ly/contact/
https://perspecta.com/contact
https://azuremarketplace.microsoft.com/marketplace/apps/aridhiainformatics.analytixagility_workspace_123?tab=Overview

Azure Policy built-in definitions for Azure API for
FHIR

 5/14/2021 • 2 minutes to read • Edit Online

 Azure API for FHIR

N A M E
DESC RIP T IO N EF F EC T (S)

VERSIO N

Azure API for FHIR should
use a customer-managed
key to encrypt data at rest

Use a customer-managed
key to control the
encryption at rest of the
data stored in Azure API for
FHIR when this is a
regulatory or compliance
requirement. Customer-
managed keys also deliver
double encryption by
adding a second layer of
encryption on top of the
default one done with
service-managed keys.

audit, disabled 1.0.1

Azure API for FHIR should
use private link

Azure API for FHIR should
have at least one approved
private endpoint
connection. Clients in a
virtual network can securely
access resources that have
private endpoint
connections through
private links. For more
information, visit:
https://aka.ms/fhir-
privatelink.

Audit, Disabled 1.0.0

CORS should not allow
every domain to access
your API for FHIR

Cross-Origin Resource
Sharing (CORS) should not
allow all domains to access
your API for FHIR. To
protect your API for FHIR,
remove access for all
domains and explicitly
define the domains allowed
to connect.

audit, disabled 1.0.0

 Next steps

This page is an index of Azure Policy built-in policy definitions for Azure API for FHIR. For additional Azure Policy

built-ins for other services, see Azure Policy built-in definitions.

The name of each built-in policy definition links to the policy definition in the Azure portal. Use the link in the

Version column to view the source on the Azure Policy GitHub repo.

(A ZURE PO RTA L) (GIT HUB)

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/healthcare-apis/fhir/policy-reference.md
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies
https://github.com/Azure/azure-policy
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F051cba44-2429-45b9-9649-46cec11c7119
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_EnableByok_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F1ee56206-5dd1-42ab-b02d-8aae8b1634ce
https://aka.ms/fhir-privatelink
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_PrivateLink_Audit.json
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%252Fproviders%252FMicrosoft.Authorization%252FpolicyDefinitions%252F0fea8f8a-4169-495d-8307-30ec335f387d
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/API%20for%20FHIR/HealthcareAPIs_RestrictCORSAccess_Audit.json

See the built-ins on the Azure Policy GitHub repo.

Review the Azure Policy definition structure.

Review Understanding policy effects.

https://github.com/Azure/azure-policy
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/effects

	Cover Page
	Azure API for FHIR
	Overview
	About Azure API for FHIR
	About Azure IoT Connector for FHIR (preview)

	Quickstarts
	Deploy Azure API for FHIR
	Using Portal
	Using PowerShell
	Using CLI
	Using ARM template

	Deploy Azure IoT Connector for FHIR (preview)
	Using Portal
	Using ARM template

	Tutorials
	Deploy JavaScript application
	1. Initial setup and FHIR deployment
	2. Register public client application
	3. Test setup with Postman
	4. Write web application

	Access FHIR API with Postman
	Use SMART on FHIR proxy
	Ingest data from IoT devices
	Receive device data through Azure IoT Hub

	Interoperability and Patient Access
	CMS Interoperability and Patient Access rule introduction
	CARIN Implementation Guide for Blue Button
	Da Vinci Drug Formulary
	Da Vinci PDex

	How-to guides
	Registering applications
	Register applications for Azure API for FHIR overview
	Resource application
	Confidential client application
	Public client application
	Service client application

	Configure settings
	Configure another Azure API for FHIR settings
	Configure Azure RBAC
	Configure Local RBAC
	Configure database settings
	Configure customer-managed keys
	Configure CORS
	Configure Export
	Configure Private Link

	Search
	Overview of FHIR search
	Defining custom search parameters
	How to run a reindex job
	Search examples for Azure API for FHIR

	Operations
	Profile validation
	Export data
	Export data
	De-identified export
	Move data to Synapse

	Convert data
	$convert-data and FHIR Converter Extension Templates

	Patient-everything in FHIR
	$member-match operation

	Find identity object IDs
	Diagnostic logging and metrics
	Enable Diagnostics Logging in Azure API for FHIR
	Display and configure Azure IoT Connector for FHIR (preview) metrics

	Get a token for Azure API for FHIR - CLI
	Troubleshoot failures in Azure IoT Connector for FHIR (preview)

	Concepts
	Azure AD and Azure API for FHIR Overview
	Access token validation
	Use Custom HTTP headers to add data to Audit Logs
	Azure IoT Connector for FHIR (preview) workings
	Azure IoT Connector for FHIR (preview) data flow
	Azure IoT Connector for FHIR (preview) mapping templates

	Security
	Security controls by Azure Policy

	Resources
	FAQ
	Supported features
	GitHub Projects
	Partner ecosystem

	Reference
	Azure CLI
	Azure Policy built-ins

